-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
28 lines (21 loc) · 1.08 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from torch import true_divide
from train_test import train
import json
import argparse
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-task",type=str, default="BRCA",help="available tasks: BRCA, ROSMAP, KIPAN, LGG")
parser.add_argument("-test_only",type=bool, default=False,help="test or train from scratch")
parser.add_argument("-uni_modality",type=bool, default=True,help="whether use uni_modality data")
parser.add_argument("-dual_modality",type=bool, default=True,help="whether use dual_modality data")
parser.add_argument("-triple_modality",type=bool, default=True,help="whether use triple_modality data")
args = parser.parse_args()
data_folder_path="../dataset/"+args.task
testonly = args.test_only
modelpath = 'checkpoints'
uni_data=args.uni_modality
dual_data=args.dual_modality
triple_data=args.triple_modality
result=train(data_folder_path, modelpath, testonly,uni_data,dual_data,triple_data)
with open(f"{args.task}_results.json","w") as f:
json.dump(result,f)