Skip to content

Latest commit

 

History

History
297 lines (219 loc) · 18.5 KB

README_ch.md

File metadata and controls

297 lines (219 loc) · 18.5 KB

English | 简体中文

PPOCRLabelv2

PyPI - Version PyPI - Downloads Downloads

PPOCRLabel是一款适用于OCR领域的半自动化图形标注工具,内置PP-OCR模型对数据自动标注和重新识别。使用Python3和PyQT5编写,支持矩形框标注、表格标注、不规则文本标注、关键信息标注模式,导出格式可直接用于PaddleOCR检测和识别模型的训练。

常规标注 表格标注
不规则文本标注 关键信息标注

近期更新

  • 2024.11:
    • 新增label_font_path参数,用来改变标签字体
    • 新增selected_shape_color参数,用来改变选中标签框和字体颜色
  • 2024.09:
    • 新增自动重新识别自动保存未提交变更功能,使用方法详见下方2.1 操作步骤11. 补充功能说明
    • 新增--img_list_natural_sort参数,默认左侧图片列表使用自然排序,配置该参数后,将使用字符排序,方便根据字符顺序定位图片。
    • 新增4个自定义模型的参数:
      • det_model_dir :检测模型目录路径
      • rec_model_dir :识别模型目录路径
      • rec_char_dict_path :识别模型字典文件路径
      • cls_model_dir :分类模型目录路径
    • 新增--bbox_auto_zoom_center参数,当图片只有一个标记框的时候,可以开启,会自动将标记框居中放大
    • 新增5个控制标记框4个顶点的快捷键zxcvb,使用方法详见下方2.1 操作步骤11. 补充功能说明
  • 2022.05:新增表格标注,使用方法见下方2.2 表格标注(by whjdark; Evezerest
  • 2022.02:新增关键信息标注、优化标注体验(by PeterH0323
    • 新增:使用 --kie 进入 KIE 功能,用于打【检测+识别+关键字提取】的标签
    • 提升用户体验:新增文件与标记数目提示、优化交互、修复gpu使用等问题。
    • 新增功能:使用 CX 对标记框进行旋转。
  • 2021.11.17:
    • 新增支持通过whl包安装和启动PPOCRLabel(by d2623587501
    • 标注数据集切分:对标注数据进行训练、验证与测试集划分(参考下方3.5节,by MrCuiHao
  • 2021.8.11:
    • 新增功能:打开数据所在文件夹、右键图像旋转90度(注意:旋转前的图片上不能存在标记框,by Wei-JL
    • 新增快捷键说明(帮助-快捷键)、修复批处理下的方向快捷键移动功能(by d2623587501
  • 2021.2.5:新增批处理与撤销功能(by Evezerest
    • 批处理功能:按住Ctrl键选择标记框后可批量移动、复制、删除、重新识别。
    • 撤销功能:在绘制四点标注框过程中或对框进行编辑操作后,按下Ctrl+Z可撤销上一部操作。
    • 修复图像旋转和尺寸问题、优化编辑标记框过程(by ninetailskimedencfc
  • 2021.1.11:优化标注体验(by edencfc):
    • 用户可在“视图 - 弹出标记输入框”选择在画完检测框后标记输入框是否弹出。
    • 识别结果与检测框同步滚动。
    • 识别结果更改为单击修改。(如果无法修改,请切换为系统自带输入法,或再次切回原输入法)
  • 2020.12.18: 支持对单个标记框进行重新识别(by ninetailskim),完善快捷键。

如果您对完善工具有不一样的想法,欢迎通过社区常规赛报名相关更改,获得积分兑换奖励。

1. 安装与运行

1.1 安装PaddlePaddle

pip3 install --upgrade pip

# 如果您的机器是CPU,请运行以下命令安装
python3 -m pip install paddlepaddle -i https://pypi.tuna.tsinghua.edu.cn/simple

更多的版本需求,请参照安装文档中的说明进行操作。

1.2 安装与运行PPOCRLabel

PPOCRLabel可通过whl包与Python脚本两种方式启动,whl包形式启动更加方便,python脚本启动便于二次开发

1.2.1 通过whl包安装与运行

Windows
pip install PPOCRLabel  # 安装

# 选择标签模式来启动
PPOCRLabel --lang ch  # 启动【普通模式】,用于打【检测+识别】场景的标签
PPOCRLabel --lang ch --kie True  # 启动 【KIE 模式】,用于打【检测+识别+关键字提取】场景的标签

注意:通过whl包安装PPOCRLabel会自动下载 paddleocr whl包,其中shapely依赖可能会出现 [winRrror 126] 找不到指定模块的问题。 的错误,建议从这里下载并安装

Ubuntu Linux
pip3 install PPOCRLabel
pip3 install trash-cli

# 选择标签模式来启动
PPOCRLabel --lang ch  # 启动【普通模式】,用于打【检测+识别】场景的标签
PPOCRLabel --lang ch --kie True  # 启动 【KIE 模式】,用于打【检测+识别+关键字提取】场景的标签
MacOS
pip3 install PPOCRLabel
pip3 install opencv-contrib-python-headless==4.2.0.32 # 如果下载过慢请添加"-i https://mirror.baidu.com/pypi/simple"

# 选择标签模式来启动
PPOCRLabel --lang ch  # 启动【普通模式】,用于打【检测+识别】场景的标签
PPOCRLabel --lang ch --kie True  # 启动 【KIE 模式】,用于打【检测+识别+关键字提取】场景的标签

如果上述安装出现问题,可以参考3.6节 错误提示

1.2.2 通过Python脚本运行PPOCRLabel

如果您对PPOCRLabel文件有所更改(例如指定新的内置模型),通过Python脚本运行会更加方便的看到更改的结果。如果仍然需要通过whl包启动,则需要先卸载当前环境中的whl包,然后参考下节重新编译whl包。

cd ./PPOCRLabel  # 切换到PPOCRLabel目录
python PPOCRLabel.py --lang ch

1.2.3 本地构建whl包并安装

cd ./PPOCRLabel
pip install -e .

1.2.4 Pyinstaller打包并运行

cd ./PPOCRLabel
# 安装pyinstaller
pip install pyinstaller

# 重新生成资源
pyrcc5 -o libs/resources.py resources.qrc

# 打包可执行程序
pyinstaller -c PPOCRLabel.py --collect-all paddleocr --collect-all pyclipper --collect-all imghdr --collect-all skimage --collect-all imgaug --collect-all scipy.io --collect-all lmdb --collect-all paddle --hidden-import=pyqt5  -p ./libs -p ./ -p ./data -p ./resources -F

# 运行dist中的可执行程序,以windows为例
PPOCRLabel.exe --lang ch

2. 使用

2.1 操作步骤

如果您只需要标注文字信息和位置,推荐按照以下步骤展开:

  1. 安装与运行:使用上述命令安装与运行程序。
  2. 打开文件夹:在菜单栏点击 “文件” - "打开目录" 选择待标记图片的文件夹[1].
  3. 自动标注:点击 ”自动标注“,使用PP-OCR超轻量模型对图片文件名前图片状态[2]为 “X” 的图片进行自动标注。
  4. 手动标注:点击 “矩形标注”(推荐直接在英文模式下点击键盘中的 “W”),用户可对当前图片中模型未检出的部分进行手动绘制标记框。点击键盘Q,则使用四点标注模式(或点击“编辑” - “四点标注”),用户依次点击4个点后,双击左键表示标注完成。
  5. 标记框绘制完成后,用户点击 “确认”,检测框会先被预分配一个 “待识别” 标签。
  6. 重新识别:将图片中的所有检测画绘制/调整完成后,点击 “重新识别”,PP-OCR模型会对当前图片中的所有检测框重新识别[3]
  7. 内容更改:单击识别结果,对不准确的识别结果进行手动更改。
  8. 确认标记:点击 “确认”,图片状态切换为 “√”,跳转至下一张。
  9. 删除:点击 “删除图像”,图片将会被删除至回收站。
  10. 导出结果:用户可以通过菜单中“文件-导出标记结果”手动导出,同时也可以点击“文件 - 自动导出标记结果”开启自动导出。手动确认过的标记将会被存放在所打开图片文件夹下的Label.txt中。在菜单栏点击 “文件” - "导出识别结果"后,会将此类图片的识别训练数据保存在crop_img文件夹下,识别标签保存在rec_gt.txt[4]
  11. 补充功能说明
    • 文件 -> 自动重新识别 : 勾选后,对于新标注的框内容会自动触发当前标注框的重新识别功能,不需要再去点击重新识别按钮,适合各种原因不想使用自动标注只想手动标注的场景,例如车牌识别,一张图里只有一个车牌,如果使用自动标注,需要删除很多额外识别出来的文字框,不如直接重新标注
    • 文件 -> 自动保存未提交变更 : 默认是按确认按钮完成当前框的标记确认,有点繁琐,勾选后,切换下一张图(按快捷键D)的时候,不再弹出提示框确认是否保存未确认的标记,自动保存当前标记并切换下一张图,方便快速标记
    • 选中标记框后,5个可以控制标记框四个顶点单独移动的快捷键,适合需要精确控制标记框四个顶点位置的场景
      • z :按下后,此时使用键盘的上下左右按键将单独移动第1个顶点
      • x :按下后,此时使用键盘的上下左右按键将单独移动第2个顶点
      • c :按下后,此时使用键盘的上下左右按键将单独移动第3个顶点
      • v :按下后,此时使用键盘的上下左右按键将单独移动第4个顶点
      • b :按下后,此时使用键盘的上下左右按键将恢复默认的整体移动整个标记框

2.2 表格标注(视频演示

表格标注针对表格的结构化提取,将图片中的表格转换为Excel格式,因此标注时需要配合外部软件打开Excel同时完成。在PPOCRLabel软件中完成表格中的文字信息标注(文字与位置)、在Excel文件中完成表格结构信息标注,推荐的步骤为:

  1. 表格识别:打开表格图片后,点击软件右上角 表格识别 按钮,软件调用PP-Structure中的表格识别模型,自动为表格打标签,同时弹出Excel

  2. 更改标注结果:以表格中的单元格为单位增加标注框(即一个单元格内的文字都标记为一个框)。标注框上鼠标右键后点击 单元格重识别 可利用模型自动识别单元格内的文字。

    注意:如果表格中存在空白单元格,同样需要使用一个标注框将其标出,使得单元格总数与图像中保持一致。

  3. 调整单元格顺序:点击软件视图-显示框编号 打开标注框序号,在软件界面右侧拖动 识别结果 一栏下的所有结果,使得标注框编号按照从左到右,从上到下的顺序排列,按行依次标注。

  4. 标注表格结构:在外部Excel软件中,将存在文字的单元格标记为任意标识符(如 1,保证Excel中的单元格合并情况与原图相同即可(即不需要Excel中的单元格文字与图片中的文字完全相同)

  5. 导出JSON格式:关闭所有表格图像对应的Excel,点击 文件-导出表格标注,生成gt.txt标注文件。

2.3 注意

[1] PPOCRLabel以文件夹为基本标记单位,打开待标记的图片文件夹后,不会在窗口栏中显示图片,而是在点击 "选择文件夹" 之后直接将文件夹下的图片导入到程序中。

[2] 图片状态表示本张图片用户是否手动保存过,未手动保存过即为 “X”,手动保存过为 “√”。点击 “自动标注”按钮后,PPOCRLabel不会对状态为 “√” 的图片重新标注。

[3] 点击“重新识别”后,模型会对图片中的识别结果进行覆盖。因此如果在此之前手动更改过识别结果,有可能在重新识别后产生变动。

[4] PPOCRLabel产生的文件放置于标记图片文件夹下,包括一下几种,请勿手动更改其中内容,否则会引起程序出现异常。

文件名 说明
Label.txt 检测标签,可直接用于PPOCR检测模型训练。用户每确认5张检测结果后,程序会进行自动写入。当用户关闭应用程序或切换文件路径后同样会进行写入。
fileState.txt 图片状态标记文件,保存当前文件夹下已经被用户手动确认过的图片名称。
Cache.cach 缓存文件,保存模型自动识别的结果。
rec_gt.txt 识别标签。可直接用于PPOCR识别模型训练。需用户手动点击菜单栏“文件” - "导出识别结果"后产生。
crop_img 识别数据。按照检测框切割后的图片。与rec_gt.txt同时产生。

3. 说明

3.1 快捷键

快捷键 说明
Ctrl + shift + R 对当前图片的所有标记重新识别
W 新建矩形框
Q 或 Home 新建多点框
Ctrl + E 编辑所选框标签
Ctrl + X --kie 模式下,修改 Box 的关键字种类
Ctrl + R 重新识别所选标记
Ctrl + C 【复制并粘贴】选中的标记框
Ctrl + 鼠标左键 多选标记框
Backspace 或 Delete 删除所选框
Ctrl + V 或 End 确认本张图片标记
Ctrl + Shift + d 删除本张图片
D 下一张图片
A 上一张图片
Ctrl++ 缩小
Ctrl-- 放大
↑→↓← 移动标记框
Z、X、C、V、B 对选中的标记框,单独移动四个顶点

3.2 内置模型

  • 默认模型:PPOCRLabel默认使用PaddleOCR中的中英文超轻量OCR模型,支持中英文与数字识别,多种语言检测。

  • 模型语言切换:用户可通过菜单栏中 "PaddleOCR" - "选择模型" 切换内置模型语言,目前支持的语言包括法文、德文、韩文、日文。具体模型下载链接可参考PaddleOCR模型列表.

  • 自定义模型:如果用户想将内置模型更换为自己的推理模型,可根据自定义模型代码使用,通过修改PPOCRLabel.py中针对PaddleOCR类的实例化 或者PPStructure实现,例如指定检测模型:self.ocr = PaddleOCR(det=True, cls=True, use_gpu=gpu, lang=lang) ,在 det_model_dir 中传入自己的模型即可。

3.3 导出标记结果

PPOCRLabel支持三种导出方式:

  • 自动导出:点击“文件 - 自动导出标记结果”后,用户每确认过一张图片,程序自动将标记结果写入Label.txt中。若未开启此选项,则检测到用户手动确认过5张图片后进行自动导出。

    默认情况下自动导出功能为关闭状态

  • 手动导出:点击“文件 - 导出标记结果”手动导出标记。

  • 关闭应用程序导出

3.4 数据集划分

在终端中输入以下命令执行数据集划分脚本:

cd ./PPOCRLabel # 将目录切换到PPOCRLabel文件夹下
python gen_ocr_train_val_test.py --trainValTestRatio 6:2:2 --datasetRootPath ../train_data

参数说明:

  • trainValTestRatio 是训练集、验证集、测试集的图像数量划分比例,根据实际情况设定,默认是6:2:2

  • datasetRootPath 是PPOCRLabel标注的完整数据集存放路径。默认路径是 PaddleOCR/train_data 分割数据集前应有如下结构:

    |-train_data
      |-crop_img
        |- word_001_crop_0.png
        |- word_002_crop_0.jpg
        |- word_003_crop_0.jpg
        | ...
      | Label.txt
      | rec_gt.txt
      |- word_001.png
      |- word_002.jpg
      |- word_003.jpg
      | ...
    

3.5 错误提示

  • 如果同时使用whl包安装了paddleocr,其优先级大于通过paddleocr.py调用PaddleOCR类,whl包未更新时会导致程序异常。

  • PPOCRLabel不支持对中文文件名的图片进行自动标注。

  • 针对Linux用户:如果您在打开软件过程中出现**objc[XXXXX]**开头的错误,证明您的opencv版本太高,建议安装4.2版本:

    pip install opencv-python==4.2.0.32
    
  • 如果出现 Missing string id 开头的错误,需要重新编译资源:

    pyrcc5 -o libs/resources.py resources.qrc
    
  • 如果出现 module 'cv2' has no attribute 'INTER_NEAREST'错误,需要首先删除所有opencv相关包,然后重新安装4.2.0.32版本的headless opencv

    pip install opencv-contrib-python-headless==4.2.0.32
    

4. 参考资料

1.Tzutalin. LabelImg. Git code (2015)