-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
241 lines (224 loc) · 11.6 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
<!doctype html>
<html xmlns="http://www.w3.org/1999/html">
<head>
<!-- Meta Tags for SEO -->
<meta charset="UTF-8">
<meta name="description"
content="Join the Introduction to Privacy-Preserving Machine Learning (PPML) workshop and learn how to protect sensitive data while leveraging the power of machine learning with PySyft and PyTorch.">
<meta name="keywords"
content="Privacy-Preserving Machine Learning, PPML, PySyft, PyTorch, OpenMined, Federated Learning, Differential Privacy, Encrypted ML, Workshop">
<meta name="author" content="Valerio Maggio, OpenMined">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="robots" content="index, follow">
<!-- Open Graph Meta Tags for Social Media -->
<meta property="og:title"
content="Introduction to Privacy-Preserving Machine Learning Workshop">
<meta property="og:description"
content="Learn how to protect sensitive data in machine learning with the Introduction to PPML workshop, using PySyft and PyTorch.">
<meta property="og:image"
content="https://openmined.github.io/intro-to-ppml-workshop/assets/imgs/OpenMined-Logo-Stacked-Light.png">
<meta property="og:url" content="https://openmined.github.io/intro-to-ppml-workshop/">
<meta property="og:type" content="website">
<!-- Twitter Card Meta Tags -->
<meta name="twitter:card" content="summary_large_image">
<meta name="twitter:title"
content="Introduction to Privacy-Preserving Machine Learning Workshop">
<meta name="twitter:description"
content="Discover how to protect sensitive data in machine learning with PySyft and PyTorch in this PPML workshop.">
<meta name="twitter:image"
content="https://openmined.github.io/intro-to-ppml-workshop/assets/imgs/OpenMined-Logo-Stacked-Light.png">
<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css"
rel="stylesheet"
integrity="sha384-QWTKZyjpPEjISv5WaRU9OFeRpok6YctnYmDr5pNlyT2bRjXh0JMhjY6hW+ALEwIH"
crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.bundle.min.js"
integrity="sha384-YvpcrYf0tY3lHB60NNkmXc5s9fDVZLESaAA55NDzOxhy9GkcIdslK1eN7N6jIeHz"
crossorigin="anonymous"></script>
<link rel="stylesheet"
href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/styles/default.min.css">
<link rel="stylesheet"
href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/styles/atom-one-dark.min.css">
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/highlight.min.js"></script>
<!-- and it's easy to individually load additional languages -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/languages/shell.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/languages/python.min.js"></script>
<script>hljs.highlightAll();</script>
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Rubik:ital,wght@0,300..900;1,300..900&display=swap"
rel="stylesheet">
<link href="https://fonts.googleapis.com/css2?family=Fira+Code:[email protected]&display=swap"
rel="stylesheet">
<!-- Gh Buttons -->
<script async defer src="https://buttons.github.io/buttons.js"></script>
<!-- Google tag (gtag.js) -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-CGS9YL8FFD"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-CGS9YL8FFD');
</script>
<link rel="stylesheet" href="assets/css/style.css"/>
<title>Introduction to Privacy Preserving Machine Learning</title>
</head>
<body>
<header id="intro" class="align-items-center">
<div class="row align-items-center justify-content-center">
<div class="col-md-12">
<div class="head">
<h1 class="display-3 title">
Introduction to
<span style="color: #333333">Privacy Preserving</span>
Machine Learning
</h1>
<img class="logo" alt="Syft Logo"
src="./assets/imgs/OpenMined-Logo-Stacked-Light.png">
</div>
</div>
</div>
</header>
<main>
<div class='container' id="main-content">
<section id="about">
<div class="row">
<div class="col">
<h3><span>Overview</span></h3>
<p>This one-hour live webinar will introduce participants to the fundamentals of
Privacy Preserving Machine Learning (<code>PPML</code>). The session
explores essential PPML concepts including Federated Learning, Differential
Privacy, and Homomorphic Encryption, providing participants with a
foundational understanding of balancing privacy and transparency in ML model
development. Through practical demonstrations, attendees will learn to
integrate privacy-preserving techniques into ML workflows using OpenMined.
Participants will explore
<a href="https://docs.openmined.org"
target="_blank"
title="PySyft Documentation">PySyft</a>, a
powerful open-source framework for
secure and private machine learning, alongside <a
href="https://syftbox-documentation.openmined.org" target="_blank"
title="SyftBox Documentation">SyftBox</a>—OpenMined's latest
project designed to make development with Privacy-Enhancing Technologies
more intuitive and developer-friendly.
</p>
<p>
<a href="https://forms.gle/y8JxCCExcVaKqwnm7"
title="PPML Webinar Registration form" target="_blank">
<span style="font-size: 2.2rem"><strong>Register here</strong></span>
</a>
</p>
</div>
</div>
</section>
<section id="learning-goals">
<div class="row">
<div class="col-md-10">
<h3><span>Objectives</span></h3>
<ol start=''>
<li>Understand the core concepts and the importance of PPML.</li>
<li>Learn the basics of Federated Learning, Differential Privacy, and
Homomorphic Encryption.
</li>
<li>Learn how PySyft and SyftBox enables privacy-preserving Machine learning</li>
</ol>
</div>
</div>
</section>
<section id="datetime">
<div class="row">
<div class="col-md-10">
<h3><span> When & Where</span></h3>
<ul>
<li><strong>Virtual Sessions:</strong> Wed. 4 December 2024, and Wed. 18 December 2024 </li>
<li><strong>Time:</strong> 5 PM GMT / 6 PM CET / 12 PM EST / 9 AM PST</li>
<li><strong>Duration:</strong> 1 hour</li>
<li><strong>Location:</strong> Online (Information will be shared with
attendees after registration)
</li>
</ul>
</div>
</div>
</section>
<section id="audience">
<div class="row">
<div class="col-md-10">
<h3><span>Target Audience</span></h3>
<p>This webinar is designed for data scientists, AI practitioners, machine
learning engineers, and
developers interested in applying privacy-preserving techniques to their ML
models, especially
those working with sensitive data in domains like healthcare, finance, and
government.
</p>
</div>
</div>
</section>
<section id="agenda">
<div class="row">
<div class="col-md-10">
<h3><span>Webinar Agenda</span></h3>
<ul class="agenda">
<li>Opening and Welcome (5 mins)</li>
<li><strong>Introduction to PPML and PETs</strong> (10 minutes):
<ul>
<li>Importance of privacy in Machine learning.</li>
<li>Intro to PETs: Privacy Enhancing Techniques (PETs)</li>
<li>Different Types of PETs</li>
</ul>
</li>
<li><strong>Core PPML Methods</strong> (20 minutes):
<ul>
<li><strong>Federated Learning</strong>: Training models across
decentralized data
sources.
</li>
<li><strong>Differential Privacy</strong>: Adding noise to data to
maintain
individual privacy in ML models.
</li>
<li><strong>Homomorphic Encryption</strong>: Secure computations on
encrypted
data.
</li>
</ul>
</li>
<li><strong>OpenMined and Privacy Tools</strong> (15 minutes):
minutes):
<ul>
<li>PPML in practice using PySyft, and the Structured Transparency
framework
</li>
<li>SyftBox at a first glance!</li>
</ul>
</li>
<li><strong>Q&A Session</strong> (10 minutes):
<ul>
<li>Addressing participant questions and insights.</li>
</ul>
</li>
</ul>
</div>
</div>
</section>
<section id="takeaways">
<div class="row">
<div class="col">
<h3><span>Takeaways</span></h3>
<p>Participants will leave with a solid understanding of PPML, its importance,
and how it can be
applied to machine learning or data science workflows.</p>
<p>This webinar is an ideal starting point for professionals seeking hands-on
tools like PySyft and SyftBox to
ensure data privacy while leveraging the full potential of machine learning
in sensitive
environments.</p>
</div>
</div>
</section>
</div>
</main>
</body>
</html>