forked from eyalbd2/PERL
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprocess_data.py
192 lines (162 loc) · 8.18 KB
/
process_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
import pickle
import pandas as pd
import csv
import matplotlib.pyplot as plt
import re
from sklearn.model_selection import train_test_split, StratifiedKFold
import preprocessor as p
from sklearn.metrics import confusion_matrix
import seaborn as sns
from sklearn.metrics import mutual_info_score
import numpy as np
sns.set_style("ticks")
def analyze_stance_data(data_path):
df = pd.read_excel(data_path)
df['Target'].replace({'Hillary Clinton': 'Hillary',
'Feminist Movement': 'Feminist',
'Legalization of Abortion': 'Abortion',
'Donald Trump': 'Trump',
'Climate Change is a Real Concern': 'Climate Change',
'Atheism': 'Atheism'}, inplace=True)
df['Sentiment'].replace({'pos': 'Positive',
'neg': 'Negative',
'other': 'Neutral'}, inplace=True)
df['Stance'].replace({'FAVOR': 'Favor',
'AGAINST': 'Against',
'NONE': 'Neutral'}, inplace=True)
# df['Target'].value_counts().plot.bar(rot=45)
# plt.savefig('counts_per_domain.pdf', bbox_inches='tight')
# df.drop(['Tweet', 'Stance'], axis=1).groupby(by=['Target', 'Sentiment']).size().plot.bar()
pd.pivot_table(df.drop(['Tweet', 'Stance'], axis=1), index='Target',
columns='Sentiment', aggfunc='size').plot.bar(rot=45, color={'Positive': 'tab:green',
'Negative': 'tab:red',
'Neutral': 'tab:gray'})
# plt.title("Number of Instances per Domain, by Sentiment Label")
plt.ylabel("Count")
plt.xlabel("Domain")
plt.savefig('counts_per_sentiment_per_domain.pdf', bbox_inches='tight')
plt.show()
pd.pivot_table(df.drop(['Tweet', 'Sentiment'], axis=1), index='Target',
columns='Stance', aggfunc='size').plot.bar(rot=45, color={'Favor': 'tab:green',
'Against': 'tab:red',
'Neutral': 'tab:gray'})
# plt.title("Number of Instances per Domain, by Stance Label")
plt.ylabel("Count")
plt.xlabel("Domain")
plt.savefig('counts_per_stance_per_domain.pdf', bbox_inches='tight')
plt.show()
# y_sentiment = df["Sentiment"]
# y_stance = df["Stance"]
# y_sentiment.replace({'Positive': 1,
# 'Negative': 0,
# 'Neutral': 2}, inplace=True)
# y_stance.replace({'Favor': 1,
# 'Against': 0,
# 'Neutral': 2}, inplace=True)
# ax = sns.heatmap(data=confusion_matrix(y_sentiment.values, y_stance.values, labels=[0,1,2]),
# annot=True,
# fmt='d',
# yticklabels=['negative', 'positive', 'other'],
# xticklabels=['against', 'favor', 'none'])
# plt.savefig('labels_corrs.pdf', bbox_inches='tight')
# plt.show()
#
# print(f"MI: {mutual_info_score(y_stance, y_sentiment)}")
def open_blitzer_data():
src = 'books'
src_path = "data/" + src + os.sep
with open(src_path + "train", 'rb') as f:
(train, train_labels) = pickle.load(f)
with open(src_path + "unlabeled", 'rb') as f:
unlabeled = pickle.load(f)
with open(src_path + "dev", 'rb') as f:
dev = pickle.load(f)
with open(src_path + "test", 'rb') as f:
test = pickle.load(f)
def filter_hashtags(tweet: str, hashtags: str):
"""
Remove all hashtags that were used in the filtering collection data.
Remove urls
:param tweet:
:param hashtags:
:return:
"""
for hashtag in hashtags.split():
tweet = tweet.replace("#" + hashtag, "")
return tweet
def preprocess_stance_data(data_path, label_name=None):
if label_name:
df = pd.read_excel(data_path)
df = df.drop('Opinion Towards', axis=1)
if label_name == 'Sentiment':
df['Sentiment'].replace({'pos': 1,
'neg': 0,
'other': None}, inplace=True)
elif label_name == 'Stance':
df['Stance'].replace({'FAVOR': 1,
'AGAINST': 0,
'NONE': None}, inplace=True)
df.dropna(inplace=True)
else:
df = pd.read_csv('RawStanceDataset/domain_tweets_all.txt', sep='\t', header=None)
df.columns = ['tweet_ID', 'date', 'Tweet', 'hashtags', 'Target']
# remove query hashtags and urls from tweets
df['Tweet'] = df.apply(lambda row: filter_hashtags(row['Tweet'], row['hashtags']), axis=1)
# Remove tweets with multiple classes
df = df[df["Target"].str.contains(",") == False]
# p.OPT.NUMBER, p.OPT.HASHTAG
p.set_options(p.OPT.URL, p.OPT.MENTION, p.OPT.RESERVED, p.OPT.EMOJI, p.OPT.SMILEY)
df['Tweet'] = df.apply(lambda row: p.clean(row['Tweet']), axis=1)
df['Tweet'].replace({'#': ' '}, inplace=True, regex=True)
df['Tweet'] = df['Target'] + " " + df['Tweet']
df['Target'].replace({'Hillary Clinton': 'hillary',
'Feminist Movement': 'feminist',
'Legalization of Abortion': 'abortion',
'Donald Trump': 'trump',
'Climate Change is a Real Concern': 'climate',
'Atheism': 'atheism'}, inplace=True)
# Save files seperately per class
for _class in ['hillary', 'feminist', 'abortion', 'trump',
'climate', 'atheism']:
save_path = os.path.join(DATA_DIR, _class)
os.makedirs(save_path, exist_ok=True)
x = df.loc[df["Target"] == _class, 'Tweet'].tolist()
if label_name:
y = df.loc[df["Target"] == _class, label_name].tolist()
print(f'Saving {len(x)} label_name={label_name} {_class} tweets to {save_path}. Positive/Favor Proportion: {sum(y) / len(y)}')
with open(os.path.join(save_path, 'test'), 'wb') as f:
pickle.dump((x, y), f)
fold_test_save_path = os.path.join("5-fold_" + save_path, 'test')
os.makedirs("5-fold_" + save_path, exist_ok=True)
with open(fold_test_save_path, 'wb') as f:
pickle.dump((x, y), f)
skf = StratifiedKFold(n_splits=5)
x_array = np.array(x)
y_array = np.array(y)
for fold_index, (train_index, test_index) in enumerate(skf.split(x_array, y_array)):
x_train, x_test = x_array[train_index].tolist(), x_array[test_index].tolist()
y_train, y_test = y_array[train_index].tolist(), y_array[test_index].tolist()
fold_save_path = os.path.join("5-fold_" + DATA_DIR, _class, f'fold-{fold_index + 1}')
os.makedirs(fold_save_path, exist_ok=True)
with open(os.path.join(fold_save_path, 'train'), 'wb') as f:
pickle.dump((x_train, y_train), f)
with open(os.path.join(fold_save_path, 'dev'), 'wb') as f:
pickle.dump((x_test, y_test), f)
x_train, x_dev, y_train, y_dev = train_test_split(x, y, test_size=0.15, stratify=y, random_state=42)
with open(os.path.join(save_path, 'train'), 'wb') as f:
pickle.dump((x_train, y_train), f)
with open(os.path.join(save_path, 'dev'), 'wb') as f:
pickle.dump((x_dev, y_dev), f)
else:
num_examples = 20000
print(f"Saving {num_examples} label_name={label_name} {_class} tweets to {save_path}")
with open(os.path.join(save_path, 'unlabeled'), 'wb') as f:
pickle.dump(x[:num_examples], f)
if __name__ == '__main__':
# label = 'Stance'
label = 'Sentiment'
DATA_DIR = 'stancedata' if label == 'Stance' else 'data'
# preprocess_stance_data("RawStanceDataset/full_data.xlsx", label_name=label)
# preprocess_stance_data('RawStanceDataset/domain_tweets_all.txt')
analyze_stance_data("RawStanceDataset/full_data.xlsx")