-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
47 lines (37 loc) · 1.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import numpy as np
from scipy import stats
from scipy.special import kl_div
def construct_edge_weight(w, d):
map = np.zeros((d*d,d*d))
for a in range(d*d):
i, j = a // d, a % d
for b in range(d*d):
p, q = b // d, b % d
try:
map[a,b] = w[a][b]
except:
pass
return map
def count_multicat_square_switches(Z, cs):
d = Z.shape[0]
c = len(cs)
qdict = dict(zip([(a,b) for a in range(c) for b in range(c)], [0 for _ in range(c*c)]))
v2idx = dict(zip(cs, range(c)))
for i in range(d):
for j in range(d):
for m in [(0,1), (0,-1), (1,0), (-1,0)]:
p, q = i + m[0], j + m[1]
if p >= 0 and q >= 0 and p < d and q < d:
qdict[v2idx[Z[i,j]], v2idx[Z[p,q]]] += 1
return qdict
def evaluate_goodness_of_fit(scovs, mean, std):
standard_scovs = (scovs - mean) / std
return stats.kstest(standard_scovs, "norm", alternative="two-sided")
def evaluate_standard_error(N, Mu_analytical, Sigma_analytical, Mu_gt, Sigma_gt):
Sigma_sem = Sigma_gt / np.sqrt(N)
Sigma_sev = Sigma_gt**2 * np.sqrt(2 / (N - 1))
Mu_diff = np.abs(Mu_analytical - Mu_gt) / Sigma_sem
Var_diff = np.abs(Sigma_analytical**2 - Sigma_gt**2) / Sigma_sev
return Sigma_sem, Sigma_sev, Mu_diff, Var_diff
def evaluate_kl_divergence(xs, ys):
return kl_div(xs, ys)