-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
executable file
·89 lines (76 loc) · 2.46 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import torch
import torch.nn as nn
class MSEModel(nn.Module):
def __init__(self):
super().__init__()
self.projection = nn.Sequential(
nn.Linear(144, 64),
nn.ReLU(),
nn.Linear(64, 32),
nn.ReLU(),
nn.Linear(32, 8),
nn.ReLU()
)
self.linear = nn.Linear(8, 1)
# self.linear = nn.Sequential(
# nn.Linear(32, 16),
# nn.ReLU(),
# nn.Linear(16, 1)
# )
def forward(self, e1, e2):
e1, e2 = self.projection(e1), self.projection(e2)
return self.linear(torch.abs(e1 - e2)).squeeze()
# return torch.sum((e1 @ self.M) * e2, dim=1)
# return torch.mean(torch.abs(e1 - e2), dim=1)
class CosineModel(nn.Module):
def __init__(self, input_dim):
super().__init__()
self.projection = nn.Sequential(
nn.Linear(input_dim, 64),
nn.ReLU(),
nn.Linear(64, 32),
nn.ReLU(),
nn.Linear(32, 8)
)
self.sim_fun = nn.CosineSimilarity(dim=1, eps=1e-6)
# self.dropout = nn.Dropout(0.3)
def forward(self, e1, e2):
e1, e2 = self.projection(e1), self.projection(e2)
# return torch.sum((e1 @ self.M) * e2, dim=1)
# return self.dropout(1 - self.sim_fun(e1, e2))
return 1 - self.sim_fun(e1, e2)
class NeuralRegressionModel(nn.Module):
def __init__(self):
super().__init__()
self.projection = nn.Sequential(
nn.Linear(144, 64),
nn.ReLU(),
nn.Linear(64, 32),
nn.ReLU()
)
self.regression = nn.Sequential(
nn.Linear(32, 16),
nn.ReLU(),
nn.Linear(16, 8),
nn.ReLU(),
nn.Linear(8, 1)
)
def forward(self, e1, e2):
e1, e2 = self.projection(e1), self.projection(e2)
return self.regression(e1 - e2).squeeze()
class AffineProductModel(nn.Module):
def __init__(self):
super().__init__()
self.projection = nn.Sequential(
nn.Linear(144, 64),
nn.ReLU(),
nn.Linear(64, 32),
nn.ReLU()
)
w = torch.empty(32, 32)
nn.init.normal_(w)
self.M = nn.Parameter(w)
def forward(self, e1, e2):
e1, e2 = self.projection(e1), self.projection(e2)
# return torch.sum((e1 @ self.M) * e2, dim=1)
return torch.mean(torch.abs((e1 @ self.M) - e2), dim=1)