forked from snowzach/doods2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdoods.py
219 lines (186 loc) · 8.29 KB
/
doods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import base64
import logging
import numpy as np
import cv2
import odrpc
from detectors.tensorflow import Tensorflow
from detectors.tflite import TensorflowLite
logger = logging.getLogger('doods.doods')
# dict from detector type to class
detectors = {
"tflite": TensorflowLite,
"tensorflow": Tensorflow,
}
try:
from detectors.pytorch import PyTorch
detectors['pytorch'] = PyTorch
except ModuleNotFoundError:
logger.info('PyTorch not installed...')
try:
from detectors.deepstack import DeepStack
detectors['deepstack'] = DeepStack
except ModuleNotFoundError:
logger.info('DeepStack not installed...')
try:
from detectors.tensorflow2 import Tensorflow2
detectors['tensorflow2'] = Tensorflow2
except ModuleNotFoundError:
logger.info("Tensorflow2 Object Detection API not installed...")
font = cv2.FONT_HERSHEY_PLAIN
fontScale = 1.2
thickness = 1
lineType = 4
# These are the valid types and the conversion to what cv2 needs.
detect_request_image_conversion = {
'true' : '.jpg',
'.jpg' : '.jpg',
'jpg' : '.jpg',
'jpeg' : '.jpg',
'image/jpeg': '.jpg',
'.png' : '.png',
'png' : '.png',
'image/png' : '.png',
}
detectors_load_precedence = [
"tflite",
"tensorflow",
"tensorflow2",
"deepstack",
"pytorch",
]
class MissingDetector:
def __init__(self, dconfig):
raise Exception('Unknown detector type %s.' % dconfig.type)
class Doods:
def __init__(self, config):
self.config = config
self.config.detectors = sorted(self.config.detectors, key=lambda d: detectors_load_precedence.index(d.type) if d.type in detectors_load_precedence else 99)
# Initialize the detectors
self._detectors = {}
for detector_config in self.config.detectors:
detector_class = detectors.get(detector_config.type, MissingDetector)
try:
detector = detector_class(detector_config)
except Exception as e:
logger.error('Could not create detector %s/%s: %s' % (detector_config.type, detector_config.name, e))
continue
logger.info('Registered detector type:%s name:%s', detector.config.type, detector.config.name)
self._detectors[detector_config.name] = detector
# Get the detectors configs
def detectors(self):
detectors = []
for name in self._detectors:
detectors.append(self._detectors[name].config)
return detectors
# Detect image
def detect(self, detect):
# Coerce the image output type into something we like
if detect.image:
detect.image = detect_request_image_conversion.get(detect.image, '')
# Get the detector
if not detect.detector_name:
detect.detector_name = 'default'
if not detect.detector_name in self._detectors:
return odrpc.DetectResponse(error="unknown detector name: %s" % detect.detector_name)
detector = self._detectors[detect.detector_name]
if not detector:
ret = odrpc.DetectResponse
ret.error = "could not determine detector"
return ret
# Already an image
if type(detect.data) is np.ndarray:
image = detect.data
# If it's a url, use cv2 to read an image or frame.
elif detect.data.startswith("http") or detect.data.startswith("rtsp") or detect.data.startswith("ftp"):
cap = cv2.VideoCapture(detect.data)
if cap.isOpened():
_, image = cap.read()
cap.release()
else:
raise 'No Image'
# Should be base64 encoded image
else:
# Decode the image
image_data = base64.b64decode(detect.data)
image_bytes = np.frombuffer(image_data, dtype=np.uint8)
image = cv2.imdecode(image_bytes, cv2.IMREAD_COLOR)
# Handle preprocessing
for process in detect.preprocess:
if process == 'grayscale':
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
raise ValueError('unknown preprocessing request: %s' % process)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Run detection
ret = detector.detect(image)
if ret.error:
return ret
# Set the id
ret.id = detect.id
# Sort the detections by confidence
ret.detections = sorted(ret.detections, key=lambda d: d.confidence, reverse=True)
if self.config.log == 'all':
logger.info(ret)
ret.detections = Doods.filter_detections(ret.detections, detect.detect, detect.regions)
if self.config.log == 'detections':
logger.info(ret)
# If no image was requested, return the detection object
if not detect.image:
return ret
# Convert the image back to BGR for saving
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
height, width, channels = image.shape
# Draw the global detection labels
if self.config.globals.enabled:
global_labels = []
for label in detect.detect:
global_labels.append("%s:%d" % (label, detect.detect[label]))
if len(global_labels) > 0:
cv2.putText(image, ','.join(global_labels), (5, 15), font,
self.config.globals.fontScale, tuple(self.config.globals.fontColor), self.config.globals.fontThickness, lineType)
# Draw the region detection labels
if self.config.regions.enabled:
for region in detect.regions:
region_labels = []
for label in region.detect:
region_labels.append("%s:%d" % (label, region.detect[label]))
cv2.putText(image, ','.join(region_labels), (int(region.left*width), int(region.top*height)-2),
font, self.config.regions.fontScale, tuple(self.config.regions.fontColor), self.config.regions.fontThickness, lineType)
cv2.rectangle(image, (int(region.left*width), int(region.top*height)), (int(region.right*width), int(region.bottom*height)),
color=tuple(self.config.regions.boxColor), thickness=self.config.regions.boxThickness)
# Draw the detections
if self.config.boxes.enabled:
for detection in ret.detections:
cv2.putText(image, "%s:%d" % (detection.label, detection.confidence), (int(detection.left*width), int(detection.bottom*height)-2),
font, self.config.boxes.fontScale, tuple(self.config.boxes.fontColor), self.config.boxes.fontThickness, lineType)
cv2.rectangle(image, (int(detection.left*width), int(detection.top*height)), (int(detection.right*width), int(detection.bottom*height)),
color=tuple(self.config.boxes.boxColor), thickness=self.config.boxes.boxThickness)
ret.image = cv2.imencode(detect.image, image)[1].tostring()
return ret
# Filter the detections to the matches
@staticmethod
def filter_detections(detections, detect, regions):
ret = {}
for i, d in enumerate(detections):
if d.label in detect:
if d.confidence >= detect[d.label]:
ret[i] = d
continue
elif '*' in detect and d.confidence >= detect['*']:
ret[i] = d
continue
for r in regions:
if (
( r.covers and r.top <= d.top and r.left <= d.left and r.bottom >= d.bottom and r.right >= d.right ) or
( not r.covers and d.top <= r.bottom and d.left <= r.right and d.bottom >= r.top and d.right >= r.left )
):
if d.label in r.detect:
if d.confidence >= r.detect[d.label]:
ret[i] = d
ret[i].region_id = r.id # Add ID of region for which this passed filters.
break
elif '*' in r.detect and d.confidence >= r.detect['*']:
ret[i] = d
ret[i].region_id = r.id # Add ID of region for which this passed filters.
break
return list(ret.values())