-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpwma.R
210 lines (186 loc) · 5.07 KB
/
pwma.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
######################################################################
#
# Performance Test for Pairwise Meta-analysis
#
# This script includes two groups of tests:
#
# 1. Primary analysis for binary outcome data
# 2. Incidence analysis for single proportions
#
# Each group contains three tests:
#
# 1. Time spent on 1,000 outcomes
# 2. Time spent on 1,000 to 10,000 outcome seperately
# 3. Time spent on randomly selected 1,000 outcomes for 50 times
#
# The output will list the number of outcomes and the time spent
#
######################################################################
library('meta')
# load all data
all_data <- read.csv('./testsets/sample.csv')
######################################################################
# Primary Analysis
######################################################################
######################################################################
# 1. Single round for just 1,000 outcomes
######################################################################
# set the n for number of tests
n = 1000
start_time <- Sys.time()
for (i in 1:n) {
# get the dataf.rame
ocn = sprintf('M%04d', i)
df <- all_data[all_data$outcome == ocn, c('study', 'Et', 'Nt', 'Ec', 'Nc')]
# run meta-analysis
results <- metabin(
Et,
Nt,
Ec,
Nc,
data = df,
studlab = study,
sm = "OR",
method = "MH",
method.tau = "DL",
prediction = FALSE,
hakn = FALSE
)
}
end_time <- Sys.time()
print(paste0(n, ',', end_time - start_time))
# visualize the last one
forest.meta(results)
######################################################################
# 2. 1,000 to 10,000 outcomes
######################################################################
nn = (1:10)*1000
for (n in nn) {
start_time <- Sys.time()
for (i in 0:(n-1)) {
# get the dataf.rame
ocn = sprintf('M%04d', i)
df <- all_data[all_data$outcome == ocn, c('study', 'Et', 'Nt', 'Ec', 'Nc')]
# run meta-analysis
results <- metabin(
Et,
Nt,
Ec,
Nc,
data = df,
studlab = study,
sm = "OR",
method = "MH",
method.tau = "DL",
prediction = FALSE,
hakn = FALSE
)
}
end_time <- Sys.time()
print(paste0(n, ',', end_time - start_time))
}
######################################################################
# 3. 50 rounds for random 1,000 outcomes
######################################################################
for (r in 1:50) {
# get 1,000 outcomes
n = sample(0:9999, size=1000)
# begin test
start_time <- Sys.time()
for (i in n) {
# get the dataf.rame
ocn = sprintf('M%04d', i)
df <- all_data[all_data$outcome == ocn, c('study', 'Et', 'Nt', 'Ec', 'Nc')]
# run meta-analysis
results <- metabin(
Et,
Nt,
Ec,
Nc,
data = df,
studlab = study,
sm = "RR",
method = "MH",
method.tau = "DL",
prediction = FALSE,
hakn = FALSE
)
}
end_time <- Sys.time()
print(paste0(r, ',', end_time - start_time))
}
######################################################################
# Incidence Analysis
######################################################################
######################################################################
# 1. Single round for just 1,000 outcomes
######################################################################
# set the n for number of tests
n = 1000
start_time <- Sys.time()
for (i in 1:n) {
# get the dataf.rame
ocn = sprintf('M%04d', i)
df <- all_data[all_data$outcome == ocn, c('study', 'Et', 'Nt')]
# run meta-analysis
results <- metaprop(
Et,
Nt,
data = df,
studlab = study,
sm = 'PFT',
method = 'Inverse'
)
}
end_time <- Sys.time()
print(paste0(n, ',', end_time - start_time))
# visualize the last one
forest.meta(results)
######################################################################
# 2. 10 rounds for 1,000 to 10,000 outcomes
######################################################################
nn = (1:10)*1000
for (n in nn) {
start_time <- Sys.time()
for (i in 0:(n-1)) {
# get the dataf.rame
ocn = sprintf('M%04d', i)
df <- all_data[all_data$outcome == ocn, c('study', 'Et', 'Nt')]
# run meta-analysis
results <- metaprop(
Et,
Nt,
data = df,
studlab = study,
sm = 'PFT',
method = 'Inverse'
)
}
end_time <- Sys.time()
print(paste0(n, ',', end_time - start_time))
}
######################################################################
# 3. 50 rounds for random 1,000 outcomes
######################################################################
for (r in 1:50) {
# get 1,000 outcomes
n = sample(0:9999, size=1000)
# begin test
start_time <- Sys.time()
for (i in n) {
# get the dataf.rame
ocn = sprintf('M%04d', i)
df <- all_data[all_data$outcome == ocn, c('study', 'Et', 'Nt')]
# run meta-analysis
results <- metaprop(
Et,
Nt,
data = df,
studlab = study,
sm = 'PFT',
method = 'Inverse'
)
}
end_time <- Sys.time()
print(paste0(r, ',', end_time - start_time))
}