diff --git a/vignettes/Installing.Rmd b/vignettes/Installing.Rmd index f816977..2a60857 100644 --- a/vignettes/Installing.Rmd +++ b/vignettes/Installing.Rmd @@ -44,7 +44,7 @@ This vignette describes how you need to install the Observational Health Data Sc Under Windows the OHDSI Deep Patient Level Prediction (DeepPLP) package requires installing: -- R ( ) - (R \>= 3.5.0, but latest is recommended) +- R ( ) - (R \>= 3.3.0, but latest is recommended) - Rstudio ( ) - Java ( ) - RTools () @@ -53,7 +53,7 @@ Under Windows the OHDSI Deep Patient Level Prediction (DeepPLP) package requires Under Mac and Linux the OHDSI deepPLP package requires installing: -- R ( ) - (R \>= 3.5.0, but latest is recommended) +- R ( ) - (R \>= 3.3.0, but latest is recommended) - Rstudio ( ) - Java ( ) - Xcode command line tools(run in terminal: xcode-select --install) [MAC USERS ONLY] @@ -85,22 +85,63 @@ library(torch) This will download the required libtorch and lantern binaries for your operating system and copy them to the required locations for torch to use. -If you are using DeepPLP in an offline environment the function `torch::install_torch_from_file()` can be used. See [torch installation guide](https://torch.mlverse.org/docs/articles/installation.html) for more detailed instructions. +If you are using DeepPLP in an offline environment the function `torch::install_torch_from_file()` can be used. This will first require to download and move the correct binaries to the offline environment. See [torch installation guide](https://torch.mlverse.org/docs/articles/installation.html) for more detailed instructions. When installing make sure to close any other Rstudio sessions that are using `DeepPatientLevelPrediction` or any dependency. Keeping Rstudio sessions open can cause locks that prevent the package installing. # Testing Installation --add simple test code - -# Acknowledgments - -Considerable work has been dedicated to provide the `DeepPatientLevelPrediction` package. - -```{r tidy=TRUE,eval=TRUE} -citation("PatientLevelPrediction") +```{r, echo = TRUE, message = FALSE, warning = FALSE,tidy=FALSE,eval=FALSE} +library(PatientLevelPrediction) +library(DeepPatientLevelPrediction) + +data(plpDataSimulationProfile) +sampleSize <- 1e4 +plpData <- simulatePlpData( + plpDataSimulationProfile, + n = sampleSize +) + +populationSettings <- PatientLevelPrediction::createStudyPopulationSettings( + requireTimeAtRisk = F, + riskWindowStart = 1, + riskWindowEnd = 365) +# a very simple resnet +modelSettings <- setResNet(numLayers = 2, + sizeHidden = 64, + hiddenFactor = 1, + residualDropout = 0, + hiddenDropout = 0.2, + normalization = 'BatchNorm', + activation = 'RelU', + sizeEmbedding = 64, + weightDecay = 1e-6, + learningRate = 3e-4, + seed = 42, + hyperParamSearch = 'random', + randomSample = 1, device = 'cpu',batchSize = 128, + epochs = 3) + +plpResults <- PatientLevelPrediction::runPlp(plpData = plpData, + outcomeId = 3, + modelSettings = modelSettings, + analysisId = 'Test', + analysisName = 'Testing DeepPlp', + populationSettings = populationSettings, + splitSettings = createDefaultSplitSetting(), + sampleSettings = createSampleSettings(), # none + featureEngineeringSettings = createFeatureEngineeringSettings(), # none + preprocessSettings = createPreprocessSettings(), + logSettings = createLogSettings(), + executeSettings = createExecuteSettings(runSplitData = T, + runSampleData = F, + runfeatureEngineering = F, + runPreprocessData = T, + runModelDevelopment = T, + runCovariateSummary = T + )) ``` -**Please reference this paper if you use the DeepPLP Package in your work:** +# Acknowledgments -[Reps JM, Schuemie MJ, Suchard MA, Ryan PB, Rijnbeek PR. Design and implementation of a standardized framework to generate and evaluate patient-level prediction models using observational healthcare data. J Am Med Inform Assoc. 2018;25(8):969-975.](http://dx.doi.org/10.1093/jamia/ocy032) +Considerable work has been dedicated to provide the `DeepPatientLevelPrediction` package. \ No newline at end of file