diff --git a/R/Estimator.R b/R/Estimator.R index 45cccaf..44cfac7 100644 --- a/R/Estimator.R +++ b/R/Estimator.R @@ -320,7 +320,7 @@ gridCvDeep <- function(mappedData, # save torch code here - estimatorFile <- estimator$save(modelLocation, "DeepEstimatorModel.pt") + estimator$save(modelLocation, "DeepEstimatorModel.pt") return( list( diff --git a/R/ResNet.R b/R/ResNet.R index 86bb140..fec94b5 100644 --- a/R/ResNet.R +++ b/R/ResNet.R @@ -30,8 +30,6 @@ #' @param hiddenFactor How much to grow the amount of neurons in each ResLayer, default: 1:4 #' @param residualDropout How much dropout to apply after last linear layer in ResLayer, default: seq(0, 0.3, 0.05) #' @param hiddenDropout How much dropout to apply after first linear layer in ResLayer, default: seq(0, 0.3, 0.05) -#' @param normalization Which type of normalization to use. Default: 'Batchnorm' -#' @param activation What kind of activation to use. Default: 'RelU' #' @param sizeEmbedding Size of embedding layer, default: 2^(6:9) (64 to 512) #' @param weightDecay Weight decay to apply, default: c(1e-6, 1e-3) #' @param learningRate Learning rate to use. default: c(1e-2, 1e-5) @@ -39,7 +37,7 @@ #' @param hyperParamSearch Which kind of hyperparameter search to use random sampling or exhaustive grid search. default: 'random' #' @param randomSample How many random samples from hyperparameter space to use #' @param device Which device to run analysis on, either 'cpu' or 'cuda', default: 'cpu' -#' @param batchSize Size of batch, default: 1024 +#' @param batchSize Size of batch, default: 1024 #' @param epochs Number of epochs to run, default: 10 #' #' @export @@ -48,8 +46,6 @@ setResNet <- function(numLayers = c(1:8), hiddenFactor = c(1:4), residualDropout = c(seq(0, 0.5, 0.05)), hiddenDropout = c(seq(0, 0.5, 0.05)), - normalization = c("BatchNorm"), - activation = c("RelU"), sizeEmbedding = c(2^(6:9)), weightDecay = c(1e-6, 1e-3), learningRate = c(1e-2, 3e-4, 1e-5), diff --git a/vignettes/BuildingDeepModels.Rmd b/vignettes/BuildingDeepModels.Rmd index 360065e..8ef5b5c 100644 --- a/vignettes/BuildingDeepModels.Rmd +++ b/vignettes/BuildingDeepModels.Rmd @@ -281,7 +281,7 @@ paper](https://arxiv.org/abs/2106.11959). ### Example -#### Set Fuction +#### Set Function To use the package to fit a ResNet model you can use the `setResNet()` function to specify the hyperparameter settings for the network. @@ -299,11 +299,6 @@ function to specify the hyperparameter settings for the network. `residualDropout` and`hiddenDropout` : How much dropout to apply in hidden layer or residual connection -`normalization` : which type of normalization to use (batch -normalization or layer normalization) - -`activation` : which activation function to use - `sizeEmbedding` : The size of the initial embedding layer ##### Training process inputs: