diff --git a/R/Dataset.R b/R/Dataset.R index 9d10343..bbe6313 100644 --- a/R/Dataset.R +++ b/R/Dataset.R @@ -20,7 +20,6 @@ Dataset <- torch::dataset( self$numericalIndex <- NULL } - # add labels if training (make 0 vector for prediction) if (!is.null(labels)) { self$target <- torch::torch_tensor(labels) @@ -35,6 +34,7 @@ Dataset <- torch::dataset( # Weight to add in loss function to positive class self$posWeight <- (self$target == 0)$sum() / self$target$sum() # for DeepNNTorch + self$useAll <- all if (all) { self$all <- torch::torch_tensor(as.matrix(data), dtype = torch::torch_float32()) self$cat <- NULL @@ -103,23 +103,37 @@ Dataset <- torch::dataset( }, .getbatch = function(item) { if (length(item) == 1) { - # add leading singleton dimension since models expects 2d tensors - return(list( - batch = list( - cat = self$cat[item]$unsqueeze(1), - num = self$num[item]$unsqueeze(1) - ), - target = self$target[item]$unsqueeze(1) - )) + return(self$.getBatchSingle(item)) + } else { + return(self$.getBatchRegular(item)) + } + }, + .getBatchSingle = function(item) { + # add leading singleton dimension since models expects 2d tensors + if (self$useAll) { + batch <- list(all = self$all[item]$unsqueeze(1)) + } else { + batch <- list(cat = self$cat[item]$unsqueeze(1), + num = self$num[item]$unsqueeze(1)) + } + return(list( + batch = batch, + target = self$target[item]$unsqueeze(1) + )) + }, + .getBatchRegular = function(item) { + if (self$useAll) { + batch <- list(all = self$all[item]) } else { - return(list( - batch = list( - cat = self$cat[item], - num = self$num[item] - ), - target = self$target[item] - )) + batch = list( + cat = self$cat[item], + num = self$num[item] + ) } + return(list( + batch = batch, + target = self$target[item] + )) }, .length = function() { self$target$size()[[1]] # shape[1] diff --git a/R/DeepNNTorch.R b/R/DeepNNTorch.R index c276f4a..4e20ca7 100644 --- a/R/DeepNNTorch.R +++ b/R/DeepNNTorch.R @@ -1,30 +1,27 @@ #' settings for a Deep neural network #' @param units A list of vectors for neurons per layer -#' @param layer_dropout Dropout to use per layer +#' @param layerDropout Dropout to use per layer #' @param lr Learning rate ot use #' @param decay Weight decay to use -#' @param outcome_weight Weight for minority outcome in cost function -#' @param batch_size Batch size to use +#' @param outcomeWeight Weight for minority outcome in cost function +#' @param batchSize Batch size to use #' @param epochs How many epochs to use #' @param device Which device to use #' @param seed A seed to make experiments more reproducible #' @export setDeepNNTorch <- function(units = list(c(128, 64), 128), - layer_dropout = c(0.2), + layerDropout = c(0.2), lr = c(1e-4), decay = c(1e-5), - outcome_weight = c(1.0), - batch_size = c(10000), + outcomeWeight = c(1.0), + batchSize = c(10000), epochs = c(100), device = "cpu", seed = NULL) { - - # ensure_installed("torch") - param <- expand.grid( units = units, - layer_dropout = layer_dropout, - lr = lr, decay = decay, outcome_weight = outcome_weight, epochs = epochs, + layerDropout = layerDropout, + lr = lr, decay = decay, outcomeWeight = outcomeWeight, epochs = epochs, seed = ifelse(is.null(seed), "NULL", seed) ) @@ -34,17 +31,15 @@ setDeepNNTorch <- function(units = list(c(128, 64), 128), param$units <- NULL attr(param, "settings") <- list( - selectorType = "byPid", # is this correct? - crossValidationInPrior = T, modelType = "DeepNN", seed = seed[1], name = "DeepNNTorch", units = units, - layer_dropout = layer_dropout, + layerDropout = layerDropout, lr = lr, decay = decay, - outcome_weight = outcome_weight, - batch_size = batch_size, + outcomeWeight = outcomeWeight, + batchSize = batchSize, device = device, epochs = epochs ) @@ -171,13 +166,15 @@ fitDeepNNTorch <- function(trainData, #' @export predictDeepNN <- function(plpModel, data, - cohort) { - if (!"plpModel" %in% class(plpModel)) { + cohort, + batchSize=512, + device='cpu') { + if (!inherits(plpModel, 'plpModel') & !inherits(plpModel, 'nn_module')) { plpModel <- list(model = plpModel) attr(plpModel, "modelType") <- "binary" } - if ("plpData" %in% class(data)) { + if (inherits(data, 'plpData')) { dataMat <- PatientLevelPrediction::toSparseM( plpData = data, cohort = cohort, @@ -193,9 +190,23 @@ predictDeepNN <- function(plpModel, if (is.character(plpModel$model)) { model <- torch::torch_load(file.path(plpModel$model, "DeepNNTorchModel.pt"), device = "cpu") + } else { + model <- plpModel } - y_pred <- model(data$all) - prediction$value <- as.array(y_pred$to())[, 1] + model$to(device=device) + batchIndex <- 1:length(data) + batchIndex <- split(batchIndex, ceiling(seq_along(batchIndex) / batchSize)) + torch::with_no_grad({ + predictions <- c() + model$eval() + coro::loop(for (b in batchIndex) { + batch <- data[b]$batch$all$to(device=device) + target <- data[b]$target$to(device=device) + pred <- model(batch) + predictions <- c(predictions, as.array(torch::torch_sigmoid(pred[,1]$cpu()))) + }) + }) + prediction$value <- predictions attr(prediction, "metaData")$modelType <- attr(plpModel, "modelType") @@ -223,7 +234,7 @@ gridCvDeepNN <- function(matrixData, for (gridId in 1:nrow(paramSearch)) { # get the params - modelParamNames <- c("layer_dropout", "lr", "decay", "outcome_weight", "epochs", "units1", "units2", "units3") + modelParamNames <- c("layerDropout", "lr", "decay", "outcomeWeight", "epochs", "units1", "units2", "units3") modelParams <- paramSearch[gridId, modelParamNames] fitParams <- paramSearch[gridId, c("lr", "decay")] @@ -247,7 +258,7 @@ gridCvDeepNN <- function(matrixData, inputN = ncol(matrixData), layer1 = modelParams$units1, outputN = 2, - layer_dropout = modelParams$layer_dropout + layer_dropout = modelParams$layerDropout ) } else if (is.na(modelParams$units3)) { model <- doubleLayerNN( @@ -255,7 +266,7 @@ gridCvDeepNN <- function(matrixData, layer1 = modelParams$units1, layer2 = modelParams$units2, outputN = 2, - layer_dropout = modelParams$layer_dropout + layer_dropout = modelParams$layerDropout ) } else { model <- tripleLayerNN( @@ -264,12 +275,14 @@ gridCvDeepNN <- function(matrixData, layer2 = modelParams$units2, layer3 = modelParams$units3, outputN = 2, - layer_dropout = modelParams$layer_dropout + layer_dropout = modelParams$layerDropout ) } - + + model$to(device=device) criterion <- torch::nn_bce_loss() # Binary crossentropy only - optimizer <- torch::optim_adam(model$parameters, lr = fitParams$lr) + optimizer <- torch::optim_adam(model$parameters, lr = fitParams$lr, + weight_decay = fitParams$decay) # Need earlyStopping # Need setting decay @@ -278,30 +291,70 @@ gridCvDeepNN <- function(matrixData, trainDataset <- torch::dataset_subset(dataset, indices = which(fold != i)) testDataset <- torch::dataset_subset(dataset, indices = which(fold == i)) - # batches <- split(trainDataset, ceiling(seq_along(trainDataset)/batch_size)) - + batchIndex <- torch::torch_randperm(length(trainDataset)) + 1L + batchIndex <- split(batchIndex, ceiling(seq_along(batchIndex) / batchSize)) + + testBatchIndex <- 1:length(testDataset) + testBatchIndex <- split(testBatchIndex, ceiling(seq_along(testBatchIndex) / batchSize)) for (j in 1:epochs) { - # for(batchRowIds in batches){ - optimizer$zero_grad() - - # this is full batch training, won't work on real data - y_pred <- model(trainDataset$dataset$all[trainDataset$indices]) - loss <- criterion(y_pred[, 1], trainDataset$dataset$target[trainDataset$indices]) - loss$backward() - optimizer$step() - - if (j %% 1 == 0) { - cat("Epoch:", j, "out of ", epochs, ": Loss:", loss$item(), "\n") - } - # } + startTime <- Sys.time() + trainLosses <- torch::torch_empty(length(batchIndex)) + ix <- 1 + model$train() + progressBar <- utils::txtProgressBar(style = 3) + coro::loop(for (b in batchIndex) { + optimizer$zero_grad() + batch <- trainDataset[b]$batch$all$to(device=device) + target <- trainDataset[b]$target$to(device=device) + y_pred <- model(batch) + loss <- criterion(y_pred[, 1], target) + loss$backward() + optimizer$step() + + trainLosses[ix] <- loss$detach() + utils::setTxtProgressBar(progressBar, ix / length(batchIndex)) + ix <- ix + 1 + }) + close(progressBar) + trainLoss <- trainLosses$mean()$item() + torch::with_no_grad({ + ix <- 1 + testLosses <- torch::torch_empty(length(batchIndex)) + model$eval() + predictions <- list() + targets <- list() + coro::loop(for (b in testBatchIndex) { + batch <- dataset[b]$batch$all$to(device=device) + target <- dataset[b]$target$to(device=device) + pred <- model(batch) + predictions <- c(predictions, pred[,1]) + targets <- c(targets, target) + testLosses[ix] <- criterion(pred[,1], target) + ix <- ix + 1 + }) + testLoss <- loss$mean()$item() + predictionsClass <- data.frame( + value = as.matrix(torch::torch_sigmoid(torch::torch_cat(predictions)$cpu())), + outcomeCount = as.matrix(torch::torch_cat(targets)$cpu()) + ) + attr(predictionsClass, "metaData")$modelType <- "binary" + auc <- PatientLevelPrediction::computeAuc(predictionsClass) + }) + + delta <- Sys.time() - startTime + ParallelLogger::logInfo( + "Epochs: ", j, + " | Val AUC: ", round(auc, 3), + " | Val Loss: ", round(testLoss, 3), + " | Train Loss: ", round(trainLoss, 3), + " | Time: ", round(delta, 3), " ", + units(delta) + ) + } - model$eval() - - ParallelLogger::logInfo("Calculating predictions on left out fold set...") - - pred <- model(testDataset$dataset$all[testDataset$indices]) + predictionTable <- labels[labels$index == i, ] - predictionTable$value <- as.array(pred$to())[, 1] + predictionTable$value <- predictionsClass$value if (!"plpModel" %in% class(model)) { model <- list(model = model) @@ -319,7 +372,6 @@ gridCvDeepNN <- function(matrixData, # get best para (this could be modified to enable any metric instead of AUC, just need metric input in function) - paramGridSearch <- lapply(gridSearchPredictons, function(x) { do.call(PatientLevelPrediction::computeGridPerformance, x) }) # cvAUCmean, cvAUC, param @@ -332,9 +384,8 @@ gridCvDeepNN <- function(matrixData, cvPrediction$evaluationType <- "CV" ParallelLogger::logInfo("Training final model using optimal parameters") - + # get the params - modelParamNames <- c("layer_dropout", "lr", "decay", "outcome_weight", "epochs", "units1", "units2", "units3") modelParams <- finalParam[modelParamNames] fitParams <- finalParam[c("lr", "decay")] fitParams$epochs <- epochs @@ -360,7 +411,7 @@ gridCvDeepNN <- function(matrixData, inputN = ncol(matrixData), layer1 = modelParams$units1, outputN = 2, - layer_dropout = modelParams$layer_dropout + layer_dropout = modelParams$layerDropout ) } else if (is.na(modelParams$units3)) { model <- doubleLayerNN( @@ -368,7 +419,7 @@ gridCvDeepNN <- function(matrixData, layer1 = modelParams$units1, layer2 = modelParams$units2, outputN = 2, - layer_dropout = modelParams$layer_dropout + layer_dropout = modelParams$layerDropout ) } else { model <- tripleLayerNN( @@ -377,23 +428,42 @@ gridCvDeepNN <- function(matrixData, layer2 = modelParams$units2, layer3 = modelParams$units3, outputN = 2, - layer_dropout = modelParams$layer_dropout + layer_dropout = modelParams$layerDropout ) } + model$to(device=device) + criterion <- torch::nn_bce_loss() # Binary crossentropy only optimizer <- torch::optim_adam(model$parameters, lr = fitParams$lr) - optimizer$zero_grad() - y_pred <- model(trainDataset$all) - loss <- criterion(y_pred[, 1], trainDataset$target) - loss$backward() - optimizer$step() - model$eval() - + + batchIndex <- torch::torch_randperm(length(trainDataset)) + 1L + batchIndex <- split(batchIndex, ceiling(seq_along(batchIndex) / batchSize)) + + for (epoch in 1:epochs) { + ix <- 1 + model$train() + progressBar <- utils::txtProgressBar(style = 3) + coro::loop(for (b in batchIndex) { + optimizer$zero_grad() + batch <- dataset[b]$batch$all$to(device=device) + target <- dataset[b]$target$to(device=device) + out <- model(batch) + loss <- criterion(out[,1], target) + loss$backward() + + optimizer$step() + utils::setTxtProgressBar(progressBar, ix / length(batchIndex)) + ix <- ix + 1 + }) + close(progressBar) + } + + browser() ParallelLogger::logInfo("Calculating predictions on all train data...") - prediction <- labels - prediction$value <- as.array(y_pred$to())[, 1] + prediction <- predictDeepNN(model, data=trainDataset, cohort=labels, + batchSize = batchSize, device = device) prediction$evaluationType <- "Train" prediction <- rbind(