Skip to content

Understanding inference encoder #5

@jgamper

Description

@jgamper

class Encoder(tf.keras.Model):
def __init__(
self,
do_convolution,
dim_latent,
num_examples,
dim_hidden,
dropout_rate=0.1,
beta=1.0,
negative_sampling=True,
*args,
**kwargs
):
super(Encoder, self).__init__(*args, **kwargs)
self.conv = (
convolution.ConvHead(
base_filters=32,
num_examples=sum(num_examples),
dropout_rate=dropout_rate,
)
if do_convolution
else dense.identity()
)
self.hidden_1 = dense.Dense(
units=dim_hidden,
num_examples=sum(num_examples),
dropout_rate=dropout_rate,
activation="elu",
name="encoder_hidden_1",
)
self.hidden_2 = dense.Dense(
units=dim_hidden,
num_examples=sum(num_examples),
dropout_rate=dropout_rate,
activation="elu",
name="encoder_hidden_2",
)
self.hidden_3 = dense.Dense(
units=dim_hidden,
num_examples=num_examples,
dropout_rate=dropout_rate,
num_branches=2,
activation="elu",
name="encoder_hidden_3",
)
self.hidden_4 = dense.Dense(
units=dim_hidden,
num_examples=num_examples,
dropout_rate=dropout_rate,
num_branches=2,
activation="elu",
name="encoder_hidden_4",
)
self.sampler = samplers.NormalSampler(
dim_output=dim_latent,
num_branches=2,
num_examples=num_examples,
beta=beta / 2 if negative_sampling else beta,
)
self.negative_sampling = negative_sampling
def call(self, inputs, training=None):
x, t = inputs
q = self.forward([x, t], training=training)
if self.negative_sampling:
t_cf = 1.0 - t
_ = self.forward([x, t_cf], training=training)
return q
def forward(self, inputs, training=None):
x, t = inputs
outputs = self.conv(x, training=training)
outputs = self.hidden_1(outputs, training=training)
outputs = self.hidden_2(outputs, training=training)
outputs = self.hidden_3([outputs, t], training=training)
outputs = self.hidden_4([outputs, t], training=training)
return self.sampler([outputs, t], training=training)

@anndvision could you please help me understand the encoder in cevae. If understand correctly; there supposed to be three inference models:

    t ~ q(t|x)      # treatment
    y ~ q(y|t,x)    # outcome
    z ~ q(z|y,t,x)  # latent confounder, an embedding
  1. In ucate code it seems that there is just a single inference model encoder that takes x and t only, which are passed as a concatenated array into the encoder network:
    outputs = self.hidden_3([outputs, t], training=training)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions