-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
130 lines (98 loc) · 3.61 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import pandas as pd
import numpy as np
import cv2
import urllib.request
import matplotlib.pyplot as plt
import string
import random
from tensorflow import keras
from keras.models import Sequential,load_model
from keras.layers import Dense,Dropout,Flatten
from keras.layers import MaxPooling2D,Conv2D
from keras import layers as L
import numpy as np
import os
from flask import Flask, render_template, request
from werkzeug.utils import secure_filename
model= load_model('braille_train.h5')
# import our OCR function
# from ocr_core import ocr_core
# define a folder to store and later serve the images
UPLOAD_FOLDER = 'static/uploads/'
# allow files of a specific type
ALLOWED_EXTENSIONS = set(['png', 'jpg', 'jpeg'])
app = Flask(__name__)
# function to check the file extension
def allowed_file(filename):
return '.' in filename and \
filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
# route and function to handle the home page
@app.route('/')
def front_page():
return render_template('home.html')
@app.route('/home')
def home_page():
return render_template('index.html')
# route and function to handle the upload page
@app.route('/upload', methods=['GET', 'POST'])
def upload_page():
if request.method == 'POST':
# check if there is a file in the request
if 'file' not in request.files:
return render_template('upload.html', msg='📎 No file selected')
file = request.files['file']
# if no file is selected
if file.filename == '':
return render_template('upload.html', msg='📎 No file selected')
if file and allowed_file(file.filename):
# Save the file to the upload folder
filename = secure_filename(file.filename)
file_path = os.path.join(app.root_path, 'static/uploads', filename)
file.save(file_path)
# Call the OCR function on the saved file
extracted_text = ocr_core(file_path)
# Extract the text and display it
return render_template('upload.html',
msg='✅ Successfully processed',
extracted_text=extracted_text,
img_src=UPLOAD_FOLDER + filename)
elif request.method == 'GET':
return render_template('upload.html')
def ocr_core(img_path):
print("Image Path:", img_path)
img = cv2.imread(img_path)
h,w,c = img.shape
print("height: ",h , " width : ", w) # h,w
img_no=cv2.resize(img,(w,116))
h1,w1,c1=img_no.shape
sentence=""
alphabet = list(string.ascii_lowercase)
cur_pos = 0
target = {}
for letter in alphabet:
target[letter] = [0] * 27
target[letter][cur_pos] = 1
cur_pos += 1
target[' '] = [0] * 27
target[' '][26] = 1
for wid in range (0,w1,72):
img_crop=img_no[:, 0+wid:72+wid]
# cv2.imshow("zz",img_crop)
pred_img = cv2.resize(img_crop, (28,28),interpolation=cv2.INTER_CUBIC)
# cv2.imshow("zz",pred_img)
pred_img = pred_img.astype(np.float32)/255.0
pred_img = np.expand_dims(pred_img,axis=0)
pred_lb = model.predict(pred_img)
for j in range(len(pred_lb[0])):
if pred_lb[0][j] > 0.6:
pred_lb[0][j] = 1.0
else:
pred_lb[0][j] = 0.0
for key,value in target.items():
if np.array_equal(np.asarray(pred_lb[0]),np.asarray(value)):
print(key)
sentence=sentence+key
print(sentence)
return sentence
if __name__ == '__main__':
app.run()