-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathhinglishutils.py
566 lines (453 loc) · 15.5 KB
/
hinglishutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
import re
import gdown
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import seaborn as sns
import torch
import tarfile
from keras.preprocessing.sequence import pad_sequences
from sklearn import preprocessing
from sklearn.metrics import precision_recall_fscore_support
from sklearn.model_selection import train_test_split
from torch.utils.data import (
DataLoader,
RandomSampler,
SequentialSampler,
TensorDataset
)
from transformers import (
BertConfig,
BertForSequenceClassification,
BertTokenizer,
DistilBertConfig,
DistilBertForSequenceClassification,
DistilBertTokenizer,
RobertaConfig,
RobertaForSequenceClassification,
RobertaTokenizer
)
import os
import time
import random
import wandb
import datetime
def print_confusion_matrix(confusion_matrix, class_names, figsize=(10, 7), fontsize=14):
"""Prints a confusion matrix, as returned by
sklearn.metrics.confusion_matrix, as a heatmap.
Arguments
---------
confusion_matrix: numpy.ndarray
The numpy.ndarray object returned from a call
to sklearn.metrics.confusion_matrix.
Similarly constructed ndarrays can also be used.
class_names: list
An ordered list of class names, in the order they index the
given confusion matrix.
figsize: tuple
A 2-long tuple, the first value determining the horizontal
size of the outputed figure,
the second determining the vertical size. Defaults to (10,7).
fontsize: int
Font size for axes labels. Defaults to 14.
Returns
-------
matplotlib.figure.Figure
The resulting confusion matrix figure
"""
df_cm = pd.DataFrame(
confusion_matrix,
index=class_names,
columns=class_names,
)
fig = plt.figure(figsize=figsize)
try:
heatmap = sns.heatmap(df_cm, annot=True, fmt="d")
except ValueError:
raise ValueError("Confusion matrix values must be integers.")
heatmap.yaxis.set_ticklabels(
heatmap.yaxis.get_ticklabels(), rotation=0, ha="right", fontsize=fontsize
)
heatmap.xaxis.set_ticklabels(
heatmap.xaxis.get_ticklabels(), rotation=45, ha="right", fontsize=fontsize
)
plt.ylabel("True label")
plt.xlabel("Predicted label")
def get_files_from_gdrive(url: str, fname: str) -> None:
"""Converts google share link to something that can be
downloaded using gdown
Args:
url (str): google drive url
fname (str): output filename
"""
file_id = url.split("/")[5]
url = f"https://drive.google.com/uc?id={file_id}"
gdown.download(url, fname, quiet=False)
if fname[-3:] == "tar":
tf = tarfile.open(fname)
tf.extractall()
def clean(df, col):
"""Cleaning Twiitter data
Arguments:
df {[pandas dataframe]} -- Dataset that needs to be cleaned
col {[string]} -- column in which text is present
Returns:
[pandas dataframe] -- Datframe with a "clean_text" column
"""
df["clean_text"] = df[col]
df["clean_text"] = (
(df["clean_text"])
.apply(lambda text: re.sub(r"RT\s@\w+:", "Retweet", text)) # Removes RTS
.apply(lambda text: re.sub(r"@", "mention ", text)) # Replaces @ with mention
.apply(lambda text: re.sub(r"#", "hashtag ", text)) # Replaces # with hastag
.apply(lambda text: re.sub(r"http\S+", "", text)) # Removes URL
)
return df
def flat_accuracy(preds, labels):
"""Accuracy calulations for tensors"""
pred_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
return np.sum(pred_flat == labels_flat) / len(labels_flat)
def flat_prf(preds, labels):
pred_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
return precision_recall_fscore_support(
labels_flat, pred_flat, labels=[0, 1, 2], average="macro"
)
def format_time(elapsed):
"""
Takes a time in seconds and returns a string hh:mm:ss
"""
elapsed_rounded = int(round((elapsed)))
return str(datetime.timedelta(seconds=elapsed_rounded))
def modify_transformer_config(
model,
batch_size=8,
attention_probs_dropout_prob=0.4,
learning_rate=5e-7,
adam_epsilon=1e-8,
hidden_dropout_prob=0.3,
lm_model_dir=None,
):
if model == "bert":
config = BertConfig.from_json_file(f"{lm_model_dir}/config.json")
elif model == "distilbert":
config = DistilBertConfig.from_json_file(f"{lm_model_dir}/config.json")
elif model == "roberta":
config = RobertaConfig.from_json_file(f"{lm_model_dir}/config.json")
config.attention_probs_dropout_prob = attention_probs_dropout_prob
config.do_sample = True
config.num_beams = 500
config.hidden_dropout_prob = hidden_dropout_prob
config.repetition_penalty = 5
config.num_labels = 3
return config
def check_for_gpu(name):
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_sentences_and_labels(
train_json="train.json", text_col="clean_text", label_col="sentiment"
):
train_df = pd.read_json(train_json)
sentences = train_df[text_col]
labels = train_df[label_col]
le = preprocessing.LabelEncoder()
le.fit(labels)
labels = le.transform(labels)
return sentences, labels, le
def evaulate_and_save_prediction_results(
tokenizer,
MAX_LEN,
model,
device,
le,
final_name,
name,
text_col="clean_text",
label_col="sentiment",
):
final_test_df = pd.read_json(final_name)
sentences = final_test_df[text_col]
prediction_inputs, prediction_masks = prep_input(sentences, tokenizer, MAX_LEN)
batch_size = 32
prediction_data = TensorDataset(prediction_inputs, prediction_masks)
prediction_sampler = SequentialSampler(prediction_data)
prediction_dataloader = DataLoader(
prediction_data, sampler=prediction_sampler, batch_size=batch_size
)
model.eval()
predictions = get_preds_from_model(prediction_dataloader, device, model)
flat_predictions = [item for sublist in predictions for item in sublist]
flat_predictions = np.argmax(flat_predictions, axis=1).flatten()
proba = [item for sublist in predictions for item in sublist]
preds = np.argmax(proba, axis=1).flatten()
output = le.inverse_transform(flat_predictions.tolist())
output_df = pd.DataFrame(
{
"Uid": list(final_test_df["uid"]),
"Sentiment": output,
text_col: list(final_test_df[text_col]),
}
)
output_df.to_csv(f"{name}-{final_name[:-5]}-output-df.csv")
wandb.save(f"{name}-{final_name[:-5]}-output-df.csv")
proba = [item for sublist in predictions for item in sublist]
preds = np.argmax(proba, axis=1).flatten()
full_output = output_df
full_output["proba_negative"] = pd.DataFrame(proba)[0]
full_output["proba_neutral"] = pd.DataFrame(proba)[1]
full_output["proba_positive"] = pd.DataFrame(proba)[2]
full_output.to_csv(f"{name}-{final_name[:-5]}-full-output.csv")
wandb.save(f"{name}-{final_name[:-5]}-full-output.csv")
return full_output
def get_preds_from_model(prediction_dataloader, device, model):
predictions = []
for batch in prediction_dataloader:
batch = tuple(t.to(device) for t in batch)
b_input_ids, b_input_mask = batch
with torch.no_grad():
outputs = model(b_input_ids, attention_mask=b_input_mask)
logits = outputs[0]
logits = logits.detach().cpu().numpy()
predictions.append(logits)
return predictions
def prep_input(sentences, tokenizer, MAX_LEN):
input_ids = []
for sent in sentences:
if sent:
encoded_sent = tokenizer.encode(
sent,
add_special_tokens=True,
)
input_ids.append(encoded_sent)
if not sent:
print(f"NAN sent detected {sent}")
input_ids = pad_sequences(
input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post"
)
attention_masks = []
for seq in input_ids:
seq_mask = [float(i > 0) for i in seq]
attention_masks.append(seq_mask)
prediction_inputs = torch.tensor(input_ids)
prediction_masks = torch.tensor(attention_masks)
return prediction_inputs, prediction_masks
def set_seed(seed_val=42):
random.seed(seed_val)
np.random.seed(seed_val)
torch.manual_seed(seed_val)
torch.cuda.manual_seed_all(seed_val)
def make_dataloaders(
train_inputs,
train_masks,
train_labels,
batch_size,
validation_inputs,
validation_masks,
validation_labels,
):
train_data = TensorDataset(train_inputs, train_masks, train_labels)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(
train_data, sampler=train_sampler, batch_size=batch_size
)
validation_data = TensorDataset(
validation_inputs, validation_masks, validation_labels
)
validation_sampler = SequentialSampler(validation_data)
validation_dataloader = DataLoader(
validation_data, sampler=validation_sampler, batch_size=batch_size
)
return train_dataloader, validation_dataloader
def load_masks_and_inputs(input_ids, labels, attention_masks):
train_inputs, validation_inputs, train_labels, validation_labels = train_test_split(
input_ids, labels, random_state=2018, test_size=0.1
)
train_masks, validation_masks, _, _ = train_test_split(
attention_masks, labels, random_state=2018, test_size=0.1
)
train_inputs = torch.tensor(train_inputs)
validation_inputs = torch.tensor(validation_inputs)
train_labels = torch.tensor(train_labels)
validation_labels = torch.tensor(validation_labels)
train_masks = torch.tensor(train_masks)
validation_masks = torch.tensor(validation_masks)
return (
train_inputs,
train_masks,
train_labels,
validation_inputs,
validation_masks,
validation_labels,
)
def create_attention_masks(input_ids):
attention_masks = []
for sent in input_ids:
att_mask = [int(token_id > 0) for token_id in sent]
attention_masks.append(att_mask)
return attention_masks
def add_padding(tokenizer, input_ids, name):
MAX_LEN = 300
input_ids = pad_sequences(
input_ids,
maxlen=MAX_LEN,
dtype="long",
value=0,
truncating="post",
padding="post",
)
return input_ids, MAX_LEN
def tokenize_the_sentences(sentences, model_name, lm_model_dir):
if model_name == "bert":
print("Loading BERT tokenizer...\n")
tokenizer = BertTokenizer.from_pretrained(lm_model_dir)
elif model_name == "distilbert":
print("Loading DistilBERT tokenizer...\n")
tokenizer = DistilBertTokenizer.from_pretrained(lm_model_dir)
elif model_name == "roberta":
print("Loading Roberta tokenizer...\n")
tokenizer = RobertaTokenizer.from_pretrained(lm_model_dir)
tokenized_texts = [tokenizer.tokenize(sent) for sent in sentences]
input_ids = []
for sent in sentences:
encoded_sent = tokenizer.encode(
sent,
add_special_tokens=True,
)
input_ids.append(encoded_sent)
return tokenizer, input_ids
def save_model(full_output, model, tokenizer, model_name):
full_output.to_csv(f"{model_name}_preds.csv")
wandb.save(f"{model_name}_preds.csv")
output_dir = f"./{model_name}/"
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, "module") else model
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
wandb.save(f"{output_dir}/*")
def load_lm_model(config, model_name, lm_model_dir):
if model_name == "bert":
model = BertForSequenceClassification.from_pretrained(
lm_model_dir, config=config
)
elif model_name == "distilbert":
model = DistilBertForSequenceClassification.from_pretrained(
lm_model_dir, config=config
)
if model_name == "roberta":
model = RobertaForSequenceClassification.from_pretrained(
lm_model_dir, config=config
)
model.cuda()
params = list(model.named_parameters())
return model
def train_model(
epochs,
model,
train_dataloader,
device,
optimizer,
scheduler,
loss_values,
model_name,
validation_dataloader,
):
for epoch_i in range(0, epochs):
t0 = time.time()
total_loss = 0
model.train()
for step, batch in enumerate(train_dataloader):
b_input_ids = batch[0].to(device)
b_input_mask = batch[1].to(device)
b_labels = batch[2].to(device)
model.zero_grad()
if model_name == "bert":
outputs = model(
b_input_ids,
token_type_ids=None,
attention_mask=b_input_mask,
labels=b_labels,
)
else:
outputs = model(
b_input_ids,
attention_mask=b_input_mask,
labels=b_labels,
)
loss = outputs[0]
total_loss += loss.item()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
scheduler.step()
if step % 40 == 0 and not step == 0:
run_valid(model, model_name, validation_dataloader, device)
avg_train_loss = total_loss / len(train_dataloader)
loss_values.append(avg_train_loss)
wandb.log({"Training loss": avg_train_loss})
print("Training complete!\n")
def run_valid(model, model_name, validation_dataloader, device):
t0 = time.time()
model.eval()
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
eval_p = 0
eval_r = 0
eval_f1 = 0
(
eval_accuracy,
nb_eval_steps,
eval_p,
eval_r,
eval_f1,
) = evaluate_data_for_one_epochs(
eval_accuracy,
eval_p,
eval_r,
eval_f1,
nb_eval_steps,
model,
model_name,
validation_dataloader,
device,
)
wandb.log({"Valid Accuracy": eval_accuracy / nb_eval_steps})
wandb.log(
{
"Valid Precision": (eval_p / nb_eval_steps),
"Valid Recall": (eval_r / nb_eval_steps),
"Valid F1": (eval_f1 / nb_eval_steps),
}
)
def evaluate_data_for_one_epochs(
eval_accuracy,
eval_p,
eval_r,
eval_f1,
nb_eval_steps,
model,
model_name,
validation_dataloader,
device,
):
for batch in validation_dataloader:
batch = tuple(t.to(device) for t in batch)
b_input_ids, b_input_mask, b_labels = batch
with torch.no_grad():
if model_name == "bert":
outputs = model(
b_input_ids, token_type_ids=None, attention_mask=b_input_mask
)
else:
outputs = model(b_input_ids, attention_mask=b_input_mask)
logits = outputs[0]
logits = logits.detach().cpu().numpy()
label_ids = b_labels.to("cpu").numpy()
tmp_eval_accuracy = flat_accuracy(logits, label_ids)
temp_eval_prf = flat_prf(logits, label_ids)
eval_accuracy += tmp_eval_accuracy
eval_p += temp_eval_prf[0]
eval_r += temp_eval_prf[1]
eval_f1 += temp_eval_prf[2]
nb_eval_steps += 1
return eval_accuracy, nb_eval_steps, eval_p, eval_r, eval_f1