-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
153 lines (133 loc) · 5.72 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import numpy as np
from quantum_compression import (
variational_quantum_compression,
simulate_quantum_circuit_with_noise,
quantum_autoencoder_compression,
visualize_quantum_results
)
from classical_model import build_and_train_model, evaluate_model
from neural_network import build_and_train_neural_network, predict_compressibility
def main():
# Generate sample data
data = [0, 1, 1, 0, 1]
# Variational Quantum Compression
optimal_params = variational_quantum_compression(data)
print(f"Optimal parameters for quantum compression: {optimal_params}")
# Create and simulate quantum circuit with optimal parameters
qc = create_variational_circuit(data)
counts = simulate_quantum_circuit_with_noise(qc)
print("Quantum Compression Results with Noise Mitigation:", counts)
visualize_quantum_results(counts)
# Machine Learning Model Training
n_samples = 100
np.random.seed(42)
X_data = np.random.randint(2, size=(n_samples, len(data)))
y_data = np.sum(X_data, axis=1)
model = build_and_train_model(X_data, y_data)
accuracy = evaluate_model(model, X_data, y_data)
print(f"Accuracy without compression: {accuracy:.2f}")
# Neural Network for Predicting Compressibility
nn_model = build_and_train_neural_network()
compressibility_prediction = predict_compressibility(nn_model, data)
print(f"Predicted compressibility: {compressibility_prediction:.2f}")
# Quantum Autoencoder Compression
qc_autoencoder = quantum_autoencoder_compression(data)
autoencoder_counts = simulate_quantum_circuit_with_noise(qc_autoencoder)
print("Quantum Autoencoder Compression Results:", autoencoder_counts)
visualize_quantum_results(autoencoder_counts)
if __name__ == "__main__":
main()
import numpy as np
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
def build_and_train_model(X, y):
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
model = LogisticRegression()
param_grid = {'C': [0.1, 1, 10]}
grid_search = GridSearchCV(model, param_grid, cv=5)
grid_search.fit(X_train, y_train)
best_model = grid_search.best_estimator_
return best_model
def evaluate_model(model, X, y):
y_pred = model.predict(X)
accuracy = accuracy_score(y, y_pred)
return accuracy
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
def build_and_train_neural_network():
x_train = np.array([[np.random.randint(1, 100), np.random.random()] for _ in range(100)])
y_train = np.array([np.random.randint(0, 1) for _ in range(100)])
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
model = Sequential([
Dense(32, activation='relu', input_shape=(2,)),
Dense(1, activation='sigmoid')
])
opt = Adam()
model.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy'])
x_train_split, x_val_split, y_train_split, y_val_split = train_test_split(x_train_scaled, y_train, test_size=0.2, random_state=42)
model.fit(x_train_split, y_train_split, epochs=50, validation_data=(x_val_split, y_val_split))
return model
def predict_compressibility(model, data):
x_test = np.array([[len(data), np.random.random()]])
scaler = StandardScaler()
x_test_scaled = scaler.fit_transform(x_test)
predictions = model.predict(x_test_scaled)
return predictions[0]
from qiskit import QuantumCircuit, Aer, transpile, assemble, execute
from qiskit.circuit.library import EfficientSU2
from qiskit.algorithms.optimizers import COBYLA
from qiskit.algorithms import VQE
from qiskit.utils import QuantumInstance
from qiskit.providers.aer import AerSimulator
from qiskit.visualization import plot_histogram
# Function to create a variational quantum circuit
def create_variational_circuit(data):
num_qubits = len(data)
feature_map = EfficientSU2(num_qubits, reps=1)
qc = QuantumCircuit(num_qubits)
qc.compose(feature_map, inplace=True)
return qc
# Function to perform variational quantum compression
def variational_quantum_compression(data):
num_qubits = len(data)
qc = create_variational_circuit(data)
optimizer = COBYLA(maxiter=100)
vqe = VQE(qc, optimizer=optimizer, quantum_instance=QuantumInstance(Aer.get_backend('statevector_simulator')))
result = vqe.compute_minimum_eigenvalue()
return result.optimal_point
# Function to simulate quantum circuit with noise mitigation
def simulate_quantum_circuit_with_noise(qc):
simulator = AerSimulator()
t_qc = transpile(qc, simulator)
job = execute(t_qc, backend=simulator, shots=1024)
result = job.result()
counts = result.get_counts()
return counts
# Function to create a quantum autoencoder
def create_quantum_autoencoder(data):
num_qubits = len(data)
encoder = QuantumCircuit(num_qubits)
for i in range(num_qubits):
encoder.h(i)
encoder.cx(i, (i + 1) % num_qubits)
decoder = encoder.inverse()
return encoder, decoder
# Function to perform quantum autoencoder compression
def quantum_autoencoder_compression(data):
encoder, decoder = create_quantum_autoencoder(data)
qc = QuantumCircuit(len(data) * 2)
qc.compose(encoder, inplace=True)
qc.compose(decoder, inplace=True)
return qc
# Visualization function for quantum results
def visualize_quantum_results(counts):
plot_histogram(counts).show()