Skip to content

Latest commit

 

History

History
383 lines (301 loc) · 18.8 KB

README.md

File metadata and controls

383 lines (301 loc) · 18.8 KB

YoloDotNet v2.2

YoloDotNet is a blazing-fast C# .NET 8 implementation of Yolo and Yolo-World models for real-time object detection in images and videos. Powered by ONNX Runtime, and supercharged with GPU acceleration using CUDA, this app is all about detecting objects at lightning speed!

Supported Versions:

Yolov8 Yolov9 Yolov10 Yolov11 Yolo-World

Supported Tasks:

  ✓   Classification   Categorize an image
  ✓   Object Detection   Detect multiple objects in a single image
  ✓   OBB Detection   OBB (Oriented Bounding Box)
  ✓   Segmentation   Separate detected objects using pixel masks
  ✓   Pose Estimation   Identifying location of specific keypoints in an image

Batteries not included.

Classification Object Detection OBB Detection Segmentation Pose Estimation
image from pexels.com image from pexels.com image from pexels.com image from pexels.com image from pexels.com

What's new in YoloDotNet v2.2?

Things are moving fast, YoloDotNet 2.2 is already here packed with exciting new features! Ever wanted to experiment with Yolo-World models in .NET? Now's your chance. With Open-Vocabulary detection and real-time, zero-shot object detection, the model can now find objects it hasn't even been trained on. It's a whole new level of object detection fun!

Yolo-World Support: Yep, you read that right – Open-Vocabulary detection is now in the mix! Real-time, zero-shot object detection is here, so the model can spot stuff it’s never been trained on. Mind-blowing, right? More about Yolo-World here. Pixel Confidence for Segmentation: Need more control? An optional pixel confidence parameter has been added for segmentation. Now it's possible to fine-tune those segmentation masks like a pro ;)

Nuget

> dotnet add package YoloDotNet

Install CUDA (optional)

YoloDotNet with GPU-acceleration requires CUDA Toolkit 12.x and cuDNN 9.x.

ONNX runtime's current compatibility with specific versions.

  1. Open File Explorer and navigate to the folder where the cuDNN-dll's are installed. The typical path looks like:
    C:\Program Files\NVIDIA\CUDNN\v9.x\bin\v12.x (where x is your version)

  2. Once you are in this specific folder (which contains .dll files), copy the folder path from the address bar at the top of the window.

  3. Add the cuDNN-Path to your System Variables:

    • Type env in windows search
    • Click on Edit the system environment variables
    • Click on Environment Variables
    • Under System Variables select the Path-variable and click Edit
    • Click on New and paste in your cuDNN dll-folder path
    • Click Ok a million times to save the changes
  4. Super-duper-important! In order for Windows to pick up the changes in your Environment Variables, make sure to close all open programs before you continue with whatever you were doing ;)

Export Yolo models to ONNX

All models must be exported to ONNX format. How to export to ONNX format.
The ONNX-models included in this repo are from Ultralytics s-series (small). https://docs.ultralytics.com/models.

Verify your model

using YoloDotNet;

// Instantiate a new Yolo object with your ONNX-model
using var yolo = new Yolo(@"path\to\model.onnx");

Console.WriteLine(yolo.OnnxModel.ModelType); // Output modeltype...

Example 1 - Image inference

using YoloDotNet;
using YoloDotNet.Enums;
using YoloDotNet.Models;
using YoloDotNet.Extensions;
using SkiaSharp;

// Instantiate a new Yolo object
using var yolo = new Yolo(new YoloOptions
{
    OnnxModel = @"path\to\model.onnx",      // Your Yolo model in onnx format
    ModelType = ModelType.ObjectDetection,  // Set your model type
    Cuda = false,                           // Use CPU or CUDA for GPU accelerated inference. Default = true
    GpuId = 0                               // Select Gpu by id. Default = 0
    PrimeGpu = false,                       // Pre-allocate GPU before first inference. Default = false
});

// Load image
using var image = SKImage.FromEncodedData(@"path\to\image.jpg");

// Run inference and get the results
var results = yolo.RunObjectDetection(image, confidence: 0.25, iou: 0.7);

// Draw results
using var resultImage = image.Draw(results);

// Save to file
resultImage.Save(@"save\as\new_image.jpg", SKEncodedImageFormat.Jpeg, 80);

Example 2 - Inference on a batch of images

using System;
using System.IO;
using SkiaSharp;
using YoloDotNet;
using YoloDotNet.Enums;
using YoloDotNet.Models;
using YoloDotNet.Extensions;
using System.Threading.Tasks;

// Instantiate a new yolo-object
using var yolo = new Yolo(new YoloOptions()
{
    OnnxModel = @"path\to\model.onnx",
    Cuda = true,
    PrimeGpu = true,
    ModelType = ModelType.ObjectDetection
});

// Collect images
var images = Directory.GetFiles(@"path\to\image\folder");

// Process images using parallelism for faster processing
Parallel.ForEach(images, image =>
{
    // Load image
    using var img = SKImage.FromEncodedData(image);

    // Run inference
    var results = yolo.RunObjectDetection(img, 0.25, 0.5);

    // Draw results
    using var resultImg = img.Draw(results);

    // Save results
    resultImg.Save(Path.Combine(@"path\to\save\folder", Path.GetFileName(image)));

    // Do further processing if needed...

});

Example 3 - Video inference

Important

Processing video requires FFmpeg and FFProbe

  • Download FFMPEG
  • Add FFmpeg and ffprobe to the Path-variable in your Environment Variables
using YoloDotNet;
using YoloDotNet.Enums;
using YoloDotNet.Models;

// Instantiate a new Yolo object
using var yolo = new Yolo(new YoloOptions
{
    OnnxModel = @"path\to\model.onnx",      // Your Yolov8 or Yolov10 model in onnx format
    ModelType = ModelType.ObjectDetection,  // Set your model type
    Cuda = false,                           // Use CPU or CUDA for GPU accelerated inference. Default = true
    GpuId = 0                               // Select Gpu by id. Default = 0
    PrimeGpu = false,                       // Pre-allocate GPU before first. Default = false
});

// Set video options
var options = new VideoOptions
{
    VideoFile = @"path\to\video.mp4",
    OutputDir = @"path\to\output\dir",
    //GenerateVideo = true,
    //DrawLabels = true,
    //FPS = 30,
    //Width = 640,  // Resize video...
    //Height = -2,  // -2 automatically calculate dimensions to keep proportions
    //Quality = 28,
    //DrawConfidence = true,
    //KeepAudio = true,
    //KeepFrames = false,
    //DrawSegment = DrawSegment.Default,
    //PoseOptions = MyPoseMarkerConfiguration // Your own pose marker configuration...
};

// Run inference on video
var results = yolo.RunObjectDetection(options, 0.25, 0.7);

// Do further processing with 'results'...

Custom KeyPoint configuration for Pose Estimation

Example on how to configure Keypoints for a Pose Estimation model

// Pass in a KeyPoint options parameter to the Draw() extension method. Ex:
image.Draw(poseEstimationResults, poseOptions);

Access ONNX metadata and labels

The internal ONNX metadata such as input & output parameters, version, author, description, date along with the labels can be accessed via the yolo.OnnxModel property.

Example:

using var yolo = new Yolo(@"path\to\model.onnx");

// ONNX metadata and labels resides inside yolo.OnnxModel
Console.WriteLine(yolo.OnnxModel);

Example:

// Instantiate a new object
using var yolo = new Yolo(@"path\to\model.onnx");

// Display metadata
foreach (var property in yolo.OnnxModel.GetType().GetProperties())
{
    var value = property.GetValue(yolo.OnnxModel);
    Console.WriteLine($"{property.Name,-20}{value!}");

    if (property.Name == nameof(yolo.OnnxModel.CustomMetaData))
        foreach (var data in (Dictionary<string, string>)value!)
            Console.WriteLine($"{"",-20}{data.Key,-20}{data.Value}");
}

// Get ONNX labels
var labels = yolo.OnnxModel.Labels;

Console.WriteLine();
Console.WriteLine($"Labels ({labels.Length}):");
Console.WriteLine(new string('-', 58));

// Display
for (var i = 0; i < labels.Length; i++)
    Console.WriteLine($"index: {i,-8} label: {labels[i].Name,20} color: {labels[i].Color}");

// Output:

// ModelType           ObjectDetection
// InputName           images
// OutputName          output0
// CustomMetaData      System.Collections.Generic.Dictionary`2[System.String,System.String]
//                     date                2023-11-07T13:33:33.565196
//                     description         Ultralytics YOLOv8n model trained on coco.yaml
//                     author              Ultralytics
//                     task                detect
//                     license             AGPL-3.0 https://ultralytics.com/license
//                     version             8.0.202
//                     stride              32
//                     batch               1
//                     imgsz               [640, 640]
//                     names               {0: 'person', 1: 'bicycle', 2: 'car' ... }
// ImageSize           Size [ Width=640, Height=640 ]
// Input               Input { BatchSize = 1, Channels = 3, Width = 640, Height = 640 }
// Output              ObjectDetectionShape { BatchSize = 1, Elements = 84, Channels = 8400 }
// Labels              YoloDotNet.Models.LabelModel[]
//
// Labels (80):
// ---------------------------------------------------------
// index: 0        label: person              color: #5d8aa8
// index: 1        label: bicycle             color: #f0f8ff
// index: 2        label: car                 color: #e32636
// index: 3        label: motorcycle          color: #efdecd
// ...

Donate

https://paypal.me/nickswardh

References & Acknowledgements

https://github.com/ultralytics/ultralytics

https://github.com/sstainba/Yolov8.Net

https://github.com/mentalstack/yolov5-net

Benchmarks

There are some benchmarks included in the project. To run them, you simply need to build the project and run the YoloDotNet.Benchmarks project. The solution must be set to Release mode to run the benchmarks.

There is a if DEBUG section in the benchmark project that will run the benchmarks in Debug mode, but it is not recommended as it will not give accurate results. This is however useful to debug and step through the code. Two examples have been left in place to show how to run the benchmarks in Debug mode, but have been commented out.

Because there is no persistant storage for benchmark results, the results below are in the form of starting point and ending point. If one makes changes to the benchmarks, you would move the ending point to the starting point and run the benchmarks again to see the improvements and those values would be the new ending point.

Benchmark results would be very much based on the hardware used. It is important to try run benchmarks on the same hardware for future comparisons. If different hardware is used, it is important to note the hardware used, as the results would be different, thus the starting point and ending point would need to be updated. Hopefully in future a single hardware configuration can be used for benchmarks, before updating documentation.

Simple Benchmarks

Simple benchmarks were modeled around the test project. The test project uses the same images and models as the benchmarks. The benchmarks are run on the same images and models as the test project. These benchmarks provide a good starting point to identify bottlenecks and areas for improvement.

The hardware these benchmarks used are detailed below, the graphics card used was a NVIDIA GeForce RTX 3060 12GB.

* Summary *

Starting Point, YoloDotNet v2.0

BenchmarkDotNet v0.13.12, Windows 10 (10.0.19045.4529/22H2/2022Update)
Intel Core i7-7700K CPU 4.20GHz (Kaby Lake), 1 CPU, 8 logical and 4 physical cores
.NET SDK 8.0.302
[Host]     : .NET 8.0.6 (8.0.624.26715), X64 RyuJIT AVX2
DefaultJob : .NET 8.0.6 (8.0.624.26715), X64 RyuJIT AVX2
Method Mean Error StdDev Gen0 Gen1 Gen2 Allocated
ClassificationCpu 5.734 ms 0.1100 ms 0.0859 ms 7.8125 - - 59.98 KB
ClassificationGpu 2.255 ms 0.0054 ms 0.0059 ms 11.7188 - - 59.98 KB
ObjectDetectionCpu 113.954 ms 1.3054 ms 1.0901 ms - - - 67.5 KB
ObjectDetectionGpu 13.751 ms 0.2164 ms 0.1918 ms 15.6250 - - 67.37 KB
SegmentationCpu 178.411 ms 2.7077 ms 2.5328 ms 1000.0000 333.3333 - 7453.61 KB
SegmentationGpu 37.857 ms 0.7501 ms 0.9212 ms 1214.2857 714.2857 214.2857 7418.45 KB
PoseEstimationCpu 116.557 ms 0.9387 ms 1.1528 ms - - - 39.71 KB
PoseEstimationGpu 12.582 ms 0.1421 ms 0.1187 ms - - - 39.57 KB
ObbDetectionCpu 346.193 ms 4.7002 ms 4.3965 ms - - - 16.48 KB
ObbDetectionGpu 27.591 ms 0.2080 ms 0.1844 ms - - - 15.78 KB

Ending Point, YoloDotNet v2.1

BenchmarkDotNet v0.13.12, Windows 11 (10.0.22631.4169/23H2/2023Update/SunValley3)
Intel Core i7-14700KF, 1 CPU, 28 logical and 20 physical cores
.NET SDK 8.0.400
[Host]     : .NET 8.0.8 (8.0.824.36612), X64 RyuJIT AVX2
DefaultJob : .NET 8.0.8 (8.0.824.36612), X64 RyuJIT AVX2
CLASSIFICATION (Input image size: 1280x844)
Method Mean Error StdDev Median Gen0 Allocated Model Used
ClassificationYolov8Cpu 3.027 ms 0.0603 ms 0.1176 ms 3.037 ms - 40.17 KB yolov8s-cls
ClassificationYolov8Gpu 1.451 ms 0.0290 ms 0.0310 ms 1.456 ms 1.9531 40.17 KB yolov8s-cls
ClassificationYolov11Cpu 6.721 ms 0.1341 ms 0.2829 ms 6.760 ms - 41.17 KB yolov11s-cls
ClassificationYolov11Gpu 3.850 ms 0.1590 ms 0.4689 ms 3.610 ms - 41.17 KB yolov11s-cls
OBJECT DETECTION (input image size: 1280x851)
Method Mean Error StdDev Allocated Model Used
ObjectDetectionYolov8Cpu 34.462 ms 0.6583 ms 0.8559 ms 34.67 KB yolov8s
ObjectDetectionYolov8Gpu 8.089 ms 0.0795 ms 0.0705 ms 34.63 KB yolov8s
ObjectDetectionYolov9Cpu 38.676 ms 0.7529 ms 0.7394 ms 29.65 KB yolov9s
ObjectDetectionYolov9Gpu 9.730 ms 0.1243 ms 0.0971 ms 29.61 KB yolov9s
ObjectDetectionYolov10Cpu 31.709 ms 0.6309 ms 0.5901 ms 24.67 KB yolov10s
ObjectDetectionYolov10Gpu 7.062 ms 0.1392 ms 0.1368 ms 24.63 KB yolov10s
ObjectDetectionYolov11Cpu 31.856 ms 0.6252 ms 0.7678 ms 32.79 KB yolov11s
ObjectDetectionYolov11Gpu 7.321 ms 0.0445 ms 0.0825 ms 32.75 KB yolov11s
ORIENTED OBJECT DETECTION (OBB) (input image size: 1280x720)
Method Mean Error StdDev Allocated Model Used
ObbDetectionYolov8Cpu 91.81 ms 1.734 ms 1.622 ms 8.43 KB yolov8s-obb
ObbDetectionYolov8Gpu 13.39 ms 0.041 ms 0.036 ms 8.37 KB yolov8s-obb
ObbDetectionYolov11Cpu 81.91 ms 1.423 ms 1.331 ms 8.43 KB yolov11s-obb
ObbDetectionYolov11Gpu 14.00 ms 0.027 ms 0.025 ms 8.37 KB yolov11s-obb
POSE ESTIMATION (input image size: 1280x720)
Method Mean Error StdDev Median Allocated Model Used
PoseEstimationYolov8Cpu 35.275 ms 0.4895 ms 0.4579 ms 35.180 ms 24.14 KB yolov8s-pose
PoseEstimationYolov8Gpu 7.445 ms 0.1474 ms 0.3415 ms 7.586 ms 24.11 KB yolov8s-pose
PoseEstimationYolov11Cpu 32.237 ms 0.6384 ms 0.9938 ms 32.056 ms 22.15 KB yolov11s-pose
PoseEstimationYolov11Gpu 7.190 ms 0.1401 ms 0.1721 ms 7.206 ms 22.13 KB yolov11s-pose
SEGMENTATION (input image size: 1280x853)
Method Mean Error StdDev Gen0 Gen1 Gen2 Allocated Model Used
SegmentationYolov8Cpu 56.79 ms 1.121 ms 1.246 ms 444.4444 333.3333 111.1111 7.31 MB yolov8s-seg
SegmentationYolov8Gpu 31.50 ms 0.630 ms 1.198 ms 468.7500 437.5000 156.2500 7.28 MB yolov8s-seg
SegmentationYolov11Cpu 96.84 ms 1.848 ms 2.270 ms 333.3333 166.6667 - 6.8 MB yolov11s-seg
SegmentationYolov11Gpu 28.97 ms 0.293 ms 0.274 ms 406.2500 375.0000 125.0000 6.72 MB yolov11s-seg