Skip to content

Latest commit

 

History

History
80 lines (61 loc) · 3.72 KB

README.md

File metadata and controls

80 lines (61 loc) · 3.72 KB

torchexplainer : Axiomatic Attribution for NMT

This is a Pytorch implemementation of Axiomatic Attribution for Deep Networks specifically for NMT application. The underlying NMT model is from the PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin, arxiv, 2017) by Yu-Hsiang Huang. The seq2seq impelementation is on the seq2seq branch.

Requirement

  • python 3.4+
  • pytorch 0.4.1+
  • tqdm
  • numpy

Usage

Some useful tools:

The example below uses the Moses tokenizer (http://www.statmt.org/moses/) to prepare the data and the moses BLEU script for evaluation.

wget https://raw.githubusercontent.com/moses-smt/mosesdecoder/master/scripts/tokenizer/tokenizer.perl
wget https://raw.githubusercontent.com/moses-smt/mosesdecoder/master/scripts/share/nonbreaking_prefixes/nonbreaking_prefix.de
wget https://raw.githubusercontent.com/moses-smt/mosesdecoder/master/scripts/share/nonbreaking_prefixes/nonbreaking_prefix.en
sed -i "s/$RealBin\/..\/share\/nonbreaking_prefixes//" tokenizer.perl
wget https://raw.githubusercontent.com/moses-smt/mosesdecoder/master/scripts/generic/multi-bleu.perl

WMT'16 Multimodal Translation: Multi30k (de-en)

An example of training for the WMT'16 Multimodal Translation task (http://www.statmt.org/wmt16/multimodal-task.html).

0) Download the data.

mkdir -p data/multi30k
wget http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/training.tar.gz &&  tar -xf training.tar.gz -C data/multi30k && rm training.tar.gz
wget http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/validation.tar.gz && tar -xf validation.tar.gz -C data/multi30k && rm validation.tar.gz
wget http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/mmt16_task1_test.tar.gz && tar -xf mmt16_task1_test.tar.gz -C data/multi30k && rm mmt16_task1_test.tar.gz

1) Preprocess the data.

for l in en de; do for f in data/multi30k/*.$l; do if [[ "$f" != *"test"* ]]; then sed -i "$ d" $f; fi;  done; done
for l in en de; do for f in data/multi30k/*.$l; do perl tokenizer.perl -a -no-escape -l $l -q  < $f > $f.atok; done; done
python preprocess.py -train_src data/multi30k/train.en.atok -train_tgt data/multi30k/train.de.atok -valid_src data/multi30k/val.en.atok -valid_tgt data/multi30k/val.de.atok -save_data data/multi30k.atok.low.pt

2) Train the model

python train.py -data data/multi30k.atok.low.pt -save_model trained -save_mode best -proj_share_weight -label_smoothing

If your source and target language share one common vocabulary, use the -embs_share_weight flag to enable the model to share source/target word embedding.

3) Test the model

python translate.py -model trained.chkpt -vocab data/multi30k.atok.low.pt -src data/multi30k/test.en.atok -no_cuda

4) Attribute

python attribution.py -model trained.chkpt -data data/multi30k.atok.low.pt -out igs.pkl -no_cuda

To close all the matplotlib figures type

ps aux | grep python 
kill <process_id>

5) Debug

python attribution.py -model trained.chkpt -data data/multi30k.atok.low.pt -out igs.pkl -no_cuda -debug

Results

Alt Text Figure 1: Translating English to German, the brighter the square the more the model uses that word to come up with its corresponding translation. Alt Text Figure 2: Translating English to German, this time visualising the target sequence instead of the outpt sequence

Acknowledgement