-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathpointer_base.hpp
262 lines (221 loc) · 8.57 KB
/
pointer_base.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <cute/config.hpp> // CUTE_HOST_DEVICE
#include <cute/numeric/numeric_types.hpp> // cute::sizeof_bits
#include <cute/numeric/integral_constant.hpp> // Int<0>
#include <cute/util/type_traits.hpp> // cute::declval, cute::void_t, etc
namespace cute
{
//
// C++20 <iterator> iterator_traits
//
namespace detail {
// Default reference type of an iterator
template <class T, class = void>
struct iter_ref { using type = decltype(*declval<T&>()); };
// Prefer to propagate ::reference
template <class T>
struct iter_ref<T,void_t<typename T::reference>> { using type = typename T::reference; };
} // end namespace detail
template <class T>
using iter_reference = detail::iter_ref<T>;
template <class T>
using iter_reference_t = typename iter_reference<T>::type;
namespace detail {
// Default element_type of an iterator
template <class T, class = void>
struct iter_e { using type = remove_reference_t<typename iter_ref<T>::type>; };
// Prefer to propagate ::element_type
template <class T>
struct iter_e<T,void_t<typename T::element_type>> { using type = typename T::element_type; };
} // end namespace detail
template <class T>
using iter_element = detail::iter_e<T>;
template <class T>
using iter_element_t = typename iter_element<T>::type;
namespace detail {
// Default value_type of an iterator
template <class T, class = void>
struct iter_v { using type = remove_cv_t<typename iter_e<T>::type>; };
// Prefer to propagate ::value_type
template <class T>
struct iter_v<T,void_t<typename T::value_type>> { using type = typename T::value_type; };
} // end namespace detail
template <class T>
using iter_value = detail::iter_v<T>;
template <class T>
using iter_value_t = typename iter_value<T>::type;
template <class Iterator>
struct iterator_traits {
using reference = iter_reference_t<Iterator>;
using element_type = iter_element_t<Iterator>;
using value_type = iter_value_t<Iterator>;
};
//
// has_dereference to determine if a type is an iterator concept
//
namespace detail {
template <class T, class = void>
struct has_dereference : CUTE_STL_NAMESPACE::false_type {};
template <class T>
struct has_dereference<T, void_t<decltype(*declval<T&>())>> : CUTE_STL_NAMESPACE::true_type {};
} // end namespace detail
template <class T>
using has_dereference = detail::has_dereference<T>;
//
// raw_pointer_cast
//
template <class T>
CUTE_HOST_DEVICE constexpr
T*
raw_pointer_cast(T* ptr) {
return ptr;
}
// The statically-known alignment of a dynamic pointer is unknown
template <class T>
CUTE_HOST_DEVICE constexpr
Int<0>
max_alignment(T*) {
return {};
}
//
// A very simplified iterator adaptor.
// Derived classed may override methods, but be careful to reproduce interfaces exactly.
// Clients should never have an instance of this class. Do not write methods that take this as a param.
//
template <class Iterator, class DerivedType>
struct iter_adaptor
{
using iterator = Iterator;
using reference = typename iterator_traits<iterator>::reference;
using element_type = typename iterator_traits<iterator>::element_type;
using value_type = typename iterator_traits<iterator>::value_type;
iterator ptr_;
CUTE_HOST_DEVICE constexpr
iter_adaptor(iterator ptr = {}) : ptr_(ptr) {}
CUTE_HOST_DEVICE constexpr
reference operator*() const { return *ptr_; }
template <class Index>
CUTE_HOST_DEVICE constexpr
reference operator[](Index const& i) const { return ptr_[i]; }
template <class Index>
CUTE_HOST_DEVICE constexpr
DerivedType operator+(Index const& i) const { return {ptr_ + i}; }
CUTE_HOST_DEVICE constexpr
iterator get() const { return ptr_; }
CUTE_HOST_DEVICE constexpr
friend bool operator==(DerivedType const& x, DerivedType const& y) { return x.ptr_ == y.ptr_; }
CUTE_HOST_DEVICE constexpr
friend bool operator!=(DerivedType const& x, DerivedType const& y) { return x.ptr_ != y.ptr_; }
CUTE_HOST_DEVICE constexpr
friend bool operator< (DerivedType const& x, DerivedType const& y) { return x.ptr_ < y.ptr_; }
CUTE_HOST_DEVICE constexpr
friend bool operator<=(DerivedType const& x, DerivedType const& y) { return x.ptr_ <= y.ptr_; }
CUTE_HOST_DEVICE constexpr
friend bool operator> (DerivedType const& x, DerivedType const& y) { return x.ptr_ > y.ptr_; }
CUTE_HOST_DEVICE constexpr
friend bool operator>=(DerivedType const& x, DerivedType const& y) { return x.ptr_ >= y.ptr_; }
};
template <class I, class D>
CUTE_HOST_DEVICE constexpr
auto
raw_pointer_cast(iter_adaptor<I,D> const& x) {
return raw_pointer_cast(x.ptr_);
}
template <class I, class D>
CUTE_HOST_DEVICE constexpr
auto
max_alignment(iter_adaptor<I,D> const& x) {
return max_alignment(x.ptr_);
}
//
// counting iterator -- quick and dirty
//
template <class T = int>
struct counting_iterator
{
using index_type = T;
using value_type = T;
using reference = T;
index_type n_;
CUTE_HOST_DEVICE constexpr
counting_iterator(index_type n = 0) : n_(n) {}
CUTE_HOST_DEVICE constexpr
index_type operator*() const { return n_; }
CUTE_HOST_DEVICE constexpr
index_type operator[](index_type i) const { return n_ + i; }
CUTE_HOST_DEVICE constexpr
counting_iterator operator+(index_type i) const { return {n_ + i}; }
CUTE_HOST_DEVICE constexpr
counting_iterator& operator++() { ++n_; return *this; }
CUTE_HOST_DEVICE constexpr
counting_iterator operator++(int) { counting_iterator ret = *this; ++n_; return ret; }
CUTE_HOST_DEVICE constexpr
friend bool operator==(counting_iterator const& x, counting_iterator const& y) { return x.n_ == y.n_; }
CUTE_HOST_DEVICE constexpr
friend bool operator!=(counting_iterator const& x, counting_iterator const& y) { return x.n_ != y.n_; }
CUTE_HOST_DEVICE constexpr
friend bool operator< (counting_iterator const& x, counting_iterator const& y) { return x.n_ < y.n_; }
CUTE_HOST_DEVICE constexpr
friend bool operator<=(counting_iterator const& x, counting_iterator const& y) { return x.n_ <= y.n_; }
CUTE_HOST_DEVICE constexpr
friend bool operator> (counting_iterator const& x, counting_iterator const& y) { return x.n_ > y.n_; }
CUTE_HOST_DEVICE constexpr
friend bool operator>=(counting_iterator const& x, counting_iterator const& y) { return x.n_ >= y.n_; }
};
template <class T>
CUTE_HOST_DEVICE constexpr
T
raw_pointer_cast(counting_iterator<T> const& x) {
return x.n_;
}
//
// Display utilities
//
template <class T>
CUTE_HOST_DEVICE void print(T const* const ptr)
{
printf("ptr["); print(sizeof_bits<T>::value); printf("b](%p)", ptr);
}
template <class T>
CUTE_HOST_DEVICE void print(counting_iterator<T> ptr)
{
printf("counting_iter("); print(ptr.n_); printf(")");
}
#if !defined(__CUDACC_RTC__)
template <class T>
CUTE_HOST std::ostream& operator<<(std::ostream& os, counting_iterator<T> ptr)
{
return os << "counting_iter(" << ptr.n_ << ")";
}
#endif // !defined(__CUDACC_RTC__)
} // end namespace cute