|
| 1 | +"""Cuda graphs tests.""" |
| 2 | +import argparse |
| 3 | + |
| 4 | +import torch |
| 5 | +import transformer_engine.pytorch as te |
| 6 | +import apex |
| 7 | + |
| 8 | + |
| 9 | +def str_to_optimizer(optim): |
| 10 | + """Get optimizer.""" |
| 11 | + if optim == "sgd": |
| 12 | + return torch.optim.SGD |
| 13 | + if optim == "adamw": |
| 14 | + return torch.optim.AdamW |
| 15 | + if optim == "fused_sgd": |
| 16 | + return apex.optimizers.FusedSGD |
| 17 | + return apex.optimizers.FusedAdam |
| 18 | + |
| 19 | + |
| 20 | +def str_to_torch_dtype(dtype): |
| 21 | + """Get pytorch dtype.""" |
| 22 | + if dtype == "bf16": |
| 23 | + return torch.bfloat16 |
| 24 | + if dtype == "fp16": |
| 25 | + return torch.float16 |
| 26 | + return torch.float32 |
| 27 | + |
| 28 | + |
| 29 | +def manual_seed(seed): |
| 30 | + """Set seed.""" |
| 31 | + torch.manual_seed(seed) |
| 32 | + torch.cuda.manual_seed(seed) |
| 33 | + |
| 34 | + |
| 35 | +def generate_data(args, warmup=False, gen_labels=False): |
| 36 | + """Generate synthetic data.""" |
| 37 | + dtype = str_to_torch_dtype(args.dtype) |
| 38 | + gen_func = torch.ones if warmup else torch.randn |
| 39 | + if args.module == "dpa": |
| 40 | + inputs = [gen_func( |
| 41 | + args.seq_length, args.bs, args.nheads, |
| 42 | + args.embed, device="cuda", requires_grad=True, dtype=dtype |
| 43 | + ) for _ in range(3)] |
| 44 | + else: |
| 45 | + inputs = [gen_func(args.seq_length, args.bs, |
| 46 | + args.hdim, device="cuda", requires_grad=True, dtype=dtype)] |
| 47 | + |
| 48 | + if not gen_labels: |
| 49 | + return inputs |
| 50 | + |
| 51 | + target = torch.randn(args.seq_length, args.bs, args.hdim, device="cuda", dtype=dtype) |
| 52 | + return inputs, target |
| 53 | + |
| 54 | + |
| 55 | +def print_values(model, output): |
| 56 | + """Debug.""" |
| 57 | + values = [] |
| 58 | + for param in model.parameters(): |
| 59 | + values.append(param.sum().item()) |
| 60 | + if param.grad is not None: |
| 61 | + values.append(param.grad.sum().item()) |
| 62 | + values.append(output.sum().item()) |
| 63 | + print(values) |
| 64 | + |
| 65 | + |
| 66 | +def parse_args(): |
| 67 | + """Arguments.""" |
| 68 | + parser = argparse.ArgumentParser(description="Args for testing CUDA graphs with TE layers.") |
| 69 | + parser.add_argument('--seed', type=int, default=1234) |
| 70 | + parser.add_argument('--dtype', type=str, default="bf16", choices=["bf16", "fp16", "fp32"]) |
| 71 | + parser.add_argument('--optimizer', type=str, default="fused_adamw", |
| 72 | + choices=["fused_adamw", "fused_sgd", "sgd", "adamw"]) |
| 73 | + parser.add_argument('--num-layers', type=int, default=1) |
| 74 | + parser.add_argument('--module', default="linear", |
| 75 | + choices=['linear', 'layernorm_linear', 'layernorm_mlp', |
| 76 | + 'transformer', 'dpa', 'mha']) |
| 77 | + parser.add_argument('--fp8', action='store_true') |
| 78 | + parser.add_argument('--graph', action='store_true') |
| 79 | + parser.add_argument('--graph-mode', default="full", choices=['full', 'individual']) |
| 80 | + parser.add_argument('--num-warmup-iters', type=int, default=3) |
| 81 | + parser.add_argument('--steps', type=int, default=1) |
| 82 | + parser.add_argument('--hdim', type=int, default=768) |
| 83 | + parser.add_argument('--seq-length', type=int, default=2048) |
| 84 | + parser.add_argument('--bs', type=int, default=2) |
| 85 | + parser.add_argument('--nheads', type=int, default=12) |
| 86 | + parser.add_argument('--dropout', type=float, default=0.1) |
| 87 | + return parser.parse_args() |
| 88 | + |
| 89 | + |
| 90 | +def train(args): |
| 91 | + """Train.""" |
| 92 | + |
| 93 | + dtype = str_to_torch_dtype(args.dtype) |
| 94 | + |
| 95 | + # Create modules. |
| 96 | + if args.module == "transformer": |
| 97 | + modules = [te.TransformerLayer( |
| 98 | + args.hdim, args.hdim, args.nheads, |
| 99 | + hidden_dropout=args.dropout, |
| 100 | + attention_dropout=args.dropout, |
| 101 | + params_dtype=dtype, |
| 102 | + ) for _ in range(args.num_layers)] |
| 103 | + elif args.module == "layernorm_mlp": |
| 104 | + modules = [te.LayerNormMLP( |
| 105 | + args.hdim, args.hdim, params_dtype=dtype |
| 106 | + ) for _ in range(args.num_layers)] |
| 107 | + elif args.module == "layernorm_linear": |
| 108 | + modules = [te.LayerNormLinear( |
| 109 | + args.hdim, args.hdim, params_dtype=dtype |
| 110 | + ) for _ in range(args.num_layers)] |
| 111 | + elif args.module == "mha": |
| 112 | + modules = [te.MultiheadAttention( |
| 113 | + args.hdim, args.nheads, attention_dropout=args.dropout, params_dtype=dtype |
| 114 | + ) for _ in range(args.num_layers)] |
| 115 | + elif args.module == "dpa": |
| 116 | + assert args.hdim % args.nheads == 0, "Err." |
| 117 | + assert args.num_layers == 1, "Err." |
| 118 | + args.embed = args.hdim // args.nheads |
| 119 | + modules = [te.DotProductAttention( |
| 120 | + args.nheads, args.embed, attention_dropout=args.dropout |
| 121 | + ) for _ in range(args.num_layers)] |
| 122 | + else: |
| 123 | + modules = [te.Linear( |
| 124 | + args.hdim, args.hdim, device="cuda", params_dtype=dtype |
| 125 | + ) for _ in range(args.num_layers)] |
| 126 | + |
| 127 | + # Generate model and wrap API to return graphed version. |
| 128 | + if args.graph: |
| 129 | + # Graph entire module at once. |
| 130 | + if args.graph_mode == "full": |
| 131 | + model = modules[0] if args.module == "dpa" else torch.nn.Sequential(*modules) |
| 132 | + model = te.make_graphed_callables( |
| 133 | + model, |
| 134 | + generate_data(args, warmup=True), |
| 135 | + num_warmup_iters=args.num_warmup_iters, |
| 136 | + enabled=args.fp8) |
| 137 | + else: |
| 138 | + modules = [te.make_graphed_callables( |
| 139 | + module, |
| 140 | + generate_data(args, warmup=True), |
| 141 | + num_warmup_iters=args.num_warmup_iters, |
| 142 | + enabled=args.fp8) for module in modules] |
| 143 | + model = modules[0] if args.module == "dpa" else torch.nn.Sequential(*modules) |
| 144 | + else: |
| 145 | + model = modules[0] if args.module == "dpa" else torch.nn.Sequential(*modules) |
| 146 | + |
| 147 | + # Loss function and optimizer. |
| 148 | + loss_fn = torch.nn.MSELoss() |
| 149 | + optimizer = str_to_optimizer(args.optimizer)(model.parameters(), lr=0.001) |
| 150 | + |
| 151 | + # Launch. |
| 152 | + for _ in range(args.steps): |
| 153 | + inputs, target = generate_data(args, gen_labels=True) |
| 154 | + with te.fp8_autocast(enabled=args.fp8): |
| 155 | + output = model(*inputs) |
| 156 | + loss = loss_fn(output, target) |
| 157 | + loss.backward() |
| 158 | + optimizer.step() |
| 159 | + optimizer.zero_grad() |
| 160 | + |
| 161 | + # Debug. |
| 162 | + print_values(model, output) |
| 163 | + |
| 164 | + |
| 165 | +if __name__ == "__main__": |
| 166 | + arguments = parse_args() |
| 167 | + manual_seed(arguments.seed) |
| 168 | + train(arguments) |
0 commit comments