-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathdemo.py
84 lines (63 loc) · 2.31 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
"""
Most recently tested against PySAM 2.1.4
"""
from pathlib import Path
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import PySAM.Singleowner as Singleowner
import time
import multiprocessing
from itertools import product
import PySAM.Pvsamv1 as Pvsamv1
solar_resource_file = Path(__file__).parent / "tests" / "blythe_ca_33.617773_-114.588261_psmv3_60_tmy.csv"
def gcr_func(gcr, cost_per_land_area):
"""
Returns the Internal Rate of Return of a default PV single owner project given modified ground-coverage-ratio (GCR)
and cost per land area
Args:
gcr: ratio, between 0.1 - 1
cost_per_land_area: $
Returns: IRR
"""
# set up base
a = Pvsamv1.default("FlatPlatePVSingleowner")
a.SolarResource.solar_resource_file = solar_resource_file
b = Singleowner.default("FlatPlatePVSingleowner")
# set up shading
a.Shading.subarray1_shade_mode = 1
a.Layout.subarray1_nmodx = 12
a.Layout.subarray1_nmody = 2
a.SystemDesign.subarray1_gcr = float(gcr)
land_area = a.CECPerformanceModelWithModuleDatabase.cec_area * (a.SystemDesign.subarray1_nstrings
* a.SystemDesign.subarray1_modules_per_string) / gcr * 0.0002471
a.execute(0)
# total_installed_cost = total_direct_cost + permitting_total + engr_total + grid_total + landprep_total + sales_tax_total + land_total
b.SystemCosts.total_installed_cost += cost_per_land_area * land_area * 1000
b.SystemOutput.system_pre_curtailment_kwac = a.Outputs.gen
b.SystemOutput.gen = a.Outputs.gen
b.execute(0)
return b.Outputs.analysis_period_irr
gcrs = np.arange(1, 10)
costs = np.arange(1, 10)
multi1 = time.process_time()
if __name__ == '__main__':
with multiprocessing.Pool(processes=4) as pool:
results = pool.starmap(gcr_func, product(gcrs / 10, repeat=2))
multi2 = time.process_time()
print("multi process time:", multi2 - multi1, "\n")
results = np.array([results])
results = np.reshape(results, (-1, 9))
X, Y = np.meshgrid(gcrs, costs)
fig = plt.figure()
ax = Axes3D(fig)
ax.plot_surface(X, Y, results)
plt.title("Internal Rate of Return")
plt.xlabel("GCR")
plt.ylabel("$ / land area")
plt.show()
plt.contour(X, Y, results)
plt.title("Internal Rate of Return")
plt.xlabel("GCR")
plt.ylabel("$ / land area")
plt.show()