-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathannotation_Snakefile
94 lines (83 loc) · 3.31 KB
/
annotation_Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# vim: ft=python
configfile: 'hpv_config.yaml'
workdir: os.environ['PWD']
shell.executable('bash')
localrules: ann_all
rule ann_all:
input:
'reports/%s_all_vcf_tables.txt' %config['deliver_proj'],
'multiqc/snpeff_report.html'
rule annotate:
input: 'tvc_vcf/{sampleID}.tvc_no_pad.vcf'
output:
'tvc_ann/{sampleID}.ann.vcf',
'tvc_ann/{sampleID}_snpEff.summary.csv'
params:
snpeff = config['snpeff'],
bed = config['snpeff_bed'],
db = config['snpeff_db']
run:
shell('java -Xmx2g -jar {params.snpeff}/snpEff.jar \
-ud 0 -interval {params.bed} \
-csvStats \
-stats {output[1]} \
-c {params.snpeff}/snpEff.config {params.db} {input} > {output[0]}')
#--------------------------------------------------------------------------
rule snpeff_report:
input: expand('tvc_ann/{sampleID}_snpEff.summary.csv', sampleID=sampleIDs)
output: 'multiqc/snpeff_report.html'
run:
shell('multiqc -d tvc_ann -n snpeff_report -o multiqc')
def parse_field(INFO, field):
# pass the entire INFO column and the field you want to isolate
if field + '=' in INFO:
return INFO.split(field + '=')[1].split(';')[0]
else:
return ''
rule parse_INFO:
input: rules.annotate.output[0]
output: 'vcf_tables/{sampleID}.ann.vcf.txt'
run:
# count the number of header lines and make a list of all INFO fields
infile = open(input[0], 'r')
head_lines = 0
fields = []
for line in infile:
if line.startswith('#') == False:
break
else:
head_lines += 1
if 'ID=' in line:
field = line.split('ID=')[1].split(',')[0]
fields.append(field)
infile.close()
# import the vcf and parse the INFO column
try: # check for empty dataframes
df = pandas.read_table(input[0], skiprows=head_lines-1, sep='\t') # -1 keeps the original column headers
col10 = df.columns.tolist()[-1]
df.rename(columns={col10:'sample_col'}, inplace=True) # the 10th column needs standardized name
cols = df.columns.tolist()
df['sampleID'] = wildcards.sampleID
df = df[['sampleID'] + cols] # make sample ID the first column
field_cols = []
for field in fields: # create a column for each field
df[field] = df.INFO.apply(lambda x: parse_field(x, field))
field_cols.append(field)
df = df[['sampleID'] + cols + field_cols] # reorder the columns in the spreadsheet
df.to_csv(output[0], sep='\t', index=False)
except:
errormess = wildcards.sampleID + ': no variants called'
shell('echo %s > {output}' %errormess)
rule cat_vcf_tables:
input: expand('vcf_tables/{sampleID}.ann.vcf.txt', sampleID=sampleIDs)
output: 'reports/%s_all_vcf_tables.txt' %config['deliver_proj']
run:
dfs = []
cols = []
for fname in input:
temp = pandas.read_table(fname, sep='\t')
cols = temp.columns
dfs.append(temp)
df = pandas.concat(dfs)
df = df[cols] # reorder the columns in the spreadsheet
df.to_csv(output[0], sep='\t', index=False)