-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathutil.py
466 lines (397 loc) · 18.3 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import json
import random
import os
import logging
import pickle
import string
import re
from pathlib import Path
from collections import Counter, OrderedDict, defaultdict as ddict
import torch
import numpy as np
from tqdm import tqdm
from torch.utils.data import Dataset
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def load_pickle(path):
with open(path, 'rb') as f:
obj = pickle.load(f)
return obj
def save_pickle(obj, path):
with open(path, 'wb') as f:
pickle.dump(obj, f)
return
def visualize(tbx, pred_dict, gold_dict, step, split, num_visuals):
"""Visualize text examples to TensorBoard.
Args:
tbx (tensorboardX.SummaryWriter): Summary writer.
pred_dict (dict): dict of predictions of the form id -> pred.
step (int): Number of examples seen so far during training.
split (str): Name of data split being visualized.
num_visuals (int): Number of visuals to select at random from preds.
"""
if num_visuals <= 0:
return
if num_visuals > len(pred_dict):
num_visuals = len(pred_dict)
id2index = {curr_id : idx for idx, curr_id in enumerate(gold_dict['id'])}
visual_ids = np.random.choice(list(pred_dict), size=num_visuals, replace=False)
for i, id_ in enumerate(visual_ids):
pred = pred_dict[id_] or 'N/A'
idx_gold_dict = id2index[id_]
question = gold_dict['question'][idx_gold_dict]
context = gold_dict['context'][idx_gold_dict]
answers = gold_dict['answer'][idx_gold_dict]
gold = answers['text'][0] if answers else 'N/A'
tbl_fmt = (f'- **Question:** {question}\n'
+ f'- **Context:** {context}\n'
+ f'- **Answer:** {gold}\n'
+ f'- **Prediction:** {pred}')
tbx.add_text(tag=f'{split}/{i+1}_of_{num_visuals}',
text_string=tbl_fmt,
global_step=step)
def get_save_dir(base_dir, name, id_max=100):
for uid in range(1, id_max):
save_dir = os.path.join(base_dir, f'{name}-{uid:02d}')
if not os.path.exists(save_dir):
os.makedirs(save_dir)
return save_dir
raise RuntimeError('Too many save directories created with the same name. \
Delete old save directories or use another name.')
def filter_encodings(encodings):
filter_idx = [idx for idx, val in enumerate(encodings['end_positions'])
if not val]
filter_idx = set(filter_idx)
encodings_filtered = {key : [] for key in encodings}
sz = len(encodings['input_ids'])
for idx in range(sz):
if idx not in filter_idx:
for key in encodings:
encodings_filtered[key].append(encodings[key][idx])
return encodings_filtered
def merge(encodings, new_encoding):
if not encodings:
return new_encoding
else:
for key in new_encoding:
encodings[key] += new_encoding[key]
return encodings
def get_logger(log_dir, name):
"""Get a `logging.Logger` instance that prints to the console
and an auxiliary file.
Args:
log_dir (str): Directory in which to create the log file.
name (str): Name to identify the logs.
Returns:
logger (logging.Logger): Logger instance for logging events.
"""
class StreamHandlerWithTQDM(logging.Handler):
"""Let `logging` print without breaking `tqdm` progress bars.
See Also:
> https://stackoverflow.com/questions/38543506
"""
def emit(self, record):
try:
msg = self.format(record)
tqdm.write(msg)
self.flush()
except (KeyboardInterrupt, SystemExit):
raise
except:
self.handleError(record)
# Create logger
logger = logging.getLogger(name)
logger.setLevel(logging.DEBUG)
# Log everything (i.e., DEBUG level and above) to a file
log_path = os.path.join(log_dir, f'{name}.txt')
file_handler = logging.FileHandler(log_path)
file_handler.setLevel(logging.DEBUG)
# Log everything except DEBUG level (i.e., INFO level and above) to console
console_handler = StreamHandlerWithTQDM()
console_handler.setLevel(logging.INFO)
# Create format for the logs
file_formatter = logging.Formatter('[%(asctime)s] %(message)s',
datefmt='%m.%d.%y %H:%M:%S')
file_handler.setFormatter(file_formatter)
console_formatter = logging.Formatter('[%(asctime)s] %(message)s',
datefmt='%m.%d.%y %H:%M:%S')
console_handler.setFormatter(console_formatter)
# add the handlers to the logger
logger.addHandler(file_handler)
logger.addHandler(console_handler)
return logger
class AverageMeter:
"""Keep track of average values over time.
Adapted from:
> https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
def __init__(self):
self.avg = 0
self.sum = 0
self.count = 0
def reset(self):
"""Reset meter."""
self.__init__()
def update(self, val, num_samples=1):
"""Update meter with new value `val`, the average of `num` samples.
Args:
val (float): Average value to update the meter with.
num_samples (int): Number of samples that were averaged to
produce `val`.
"""
self.count += num_samples
self.sum += val * num_samples
self.avg = self.sum / self.count
class QADataset(Dataset):
def __init__(self, encodings, train=True):
self.encodings = encodings
self.keys = ['input_ids', 'attention_mask']
if train:
self.keys += ['start_positions', 'end_positions']
assert(all(key in self.encodings for key in self.keys))
def __getitem__(self, idx):
return {key : torch.tensor(self.encodings[key][idx]) for key in self.keys}
def __len__(self):
return len(self.encodings['input_ids'])
def read_squad(path):
path = Path(path)
with open(path, 'rb') as f:
squad_dict = json.load(f)
data_dict = {'question': [], 'context': [], 'id': [], 'answer': []}
for group in squad_dict['data']:
for passage in group['paragraphs']:
context = passage['context']
for qa in passage['qas']:
question = qa['question']
if len(qa['answers']) == 0:
data_dict['question'].append(question)
data_dict['context'].append(context)
data_dict['id'].append(qa['id'])
else:
for answer in qa['answers']:
data_dict['question'].append(question)
data_dict['context'].append(context)
data_dict['id'].append(qa['id'])
data_dict['answer'].append(answer)
id_map = ddict(list)
for idx, qid in enumerate(data_dict['id']):
id_map[qid].append(idx)
data_dict_collapsed = {'question': [], 'context': [], 'id': []}
if data_dict['answer']:
data_dict_collapsed['answer'] = []
for qid in id_map:
ex_ids = id_map[qid]
data_dict_collapsed['question'].append(data_dict['question'][ex_ids[0]])
data_dict_collapsed['context'].append(data_dict['context'][ex_ids[0]])
data_dict_collapsed['id'].append(qid)
if data_dict['answer']:
all_answers = [data_dict['answer'][idx] for idx in ex_ids]
data_dict_collapsed['answer'].append({'answer_start': [answer['answer_start'] for answer in all_answers],
'text': [answer['text'] for answer in all_answers]})
return data_dict_collapsed
def add_token_positions(encodings, answers, tokenizer):
start_positions = []
end_positions = []
for i in range(len(answers)):
start_positions.append(encodings.char_to_token(i, answers[i]['answer_start']))
end_positions.append(encodings.char_to_token(i, answers[i]['answer_end']))
# if start position is None, the answer passage has been truncated
if start_positions[-1] is None:
start_positions[-1] = tokenizer.model_max_length
# if end position is None, the 'char_to_token' function points to the space before the correct token - > add + 1
if end_positions[-1] is None:
end_positions[-1] = encodings.char_to_token(i, answers[i]['answer_end'] + 1)
encodings.update({'start_positions': start_positions, 'end_positions': end_positions})
def add_end_idx(answers, contexts):
for answer, context in zip(answers, contexts):
gold_text = answer['text']
start_idx = answer['answer_start']
end_idx = start_idx + len(gold_text)
# sometimes squad answers are off by a character or two – fix this
if context[start_idx:end_idx] == gold_text:
answer['answer_end'] = end_idx
elif context[start_idx-1:end_idx-1] == gold_text:
answer['answer_start'] = start_idx - 1
answer['answer_end'] = end_idx - 1 # When the gold label is off by one character
elif context[start_idx-2:end_idx-2] == gold_text:
answer['answer_start'] = start_idx - 2
answer['answer_end'] = end_idx - 2 # When the gold label is off by two characters
def convert_tokens(eval_dict, qa_id, y_start_list, y_end_list):
"""Convert predictions to tokens from the context.
Args:
eval_dict (dict): Dictionary with eval info for the dataset. This is
used to perform the mapping from IDs and indices to actual text.
qa_id (int): List of QA example IDs.
y_start_list (list): List of start predictions.
y_end_list (list): List of end predictions.
no_answer (bool): Questions can have no answer. E.g., SQuAD 2.0.
Returns:
pred_dict (dict): Dictionary index IDs -> predicted answer text.
sub_dict (dict): Dictionary UUIDs -> predicted answer text (submission).
"""
pred_dict = {}
sub_dict = {}
for qid, y_start, y_end in zip(qa_id, y_start_list, y_end_list):
context = eval_dict[str(qid)]["context"]
spans = eval_dict[str(qid)]["spans"]
uuid = eval_dict[str(qid)]["uuid"]
start_idx = spans[y_start][0]
end_idx = spans[y_end][1]
pred_dict[str(qid)] = context[start_idx: end_idx]
sub_dict[uuid] = context[start_idx: end_idx]
return pred_dict, sub_dict
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
if not ground_truths:
return metric_fn(prediction, '')
scores_for_ground_truths = []
for ground_truth in ground_truths:
score = metric_fn(prediction, ground_truth)
scores_for_ground_truths.append(score)
return max(scores_for_ground_truths)
def eval_dicts(gold_dict, pred_dict):
avna = f1 = em = total = 0
id2index = {curr_id : idx for idx, curr_id in enumerate(gold_dict['id'])}
for curr_id in pred_dict:
total += 1
index = id2index[curr_id]
ground_truths = gold_dict['answer'][index]['text']
prediction = pred_dict[curr_id]
em += metric_max_over_ground_truths(compute_em, prediction, ground_truths)
f1 += metric_max_over_ground_truths(compute_f1, prediction, ground_truths)
eval_dict = {'EM': 100. * em / total,
'F1': 100. * f1 / total}
return eval_dict
def postprocess_qa_predictions(examples, features, predictions,
n_best_size=20, max_answer_length=30):
all_start_logits, all_end_logits = predictions
# Build a map example to its corresponding features.
example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
features_per_example = ddict(list)
for i, feat_id in enumerate(features['id']):
features_per_example[example_id_to_index[feat_id]].append(i)
# The dictionaries we have to fill.
all_predictions = OrderedDict()
# Let's loop over all the examples!
for example_index in tqdm(range(len(examples['id']))):
example = {key : examples[key][example_index] for key in examples}
# Those are the indices of the features associated to the current example.
feature_indices = features_per_example[example_index]
prelim_predictions = []
# Looping through all the features associated to the current example.
for feature_index in feature_indices:
# We grab the predictions of the model for this feature.
start_logits = all_start_logits[feature_index]
end_logits = all_end_logits[feature_index]
seq_ids = features.sequence_ids(feature_index)
non_pad_idx = len(seq_ids) - 1
while not seq_ids[non_pad_idx]:
non_pad_idx -= 1
start_logits = start_logits[:non_pad_idx]
end_logits = end_logits[:non_pad_idx]
# This is what will allow us to map some the positions in our logits to span of texts in the original
# context.
offset_mapping = features["offset_mapping"][feature_index]
# Optional `token_is_max_context`, if provided we will remove answers that do not have the maximum context
# available in the current feature.
token_is_max_context = features.get("token_is_max_context", None)
if token_is_max_context:
token_is_max_context = token_is_max_context[feature_index]
# Go through all possibilities for the `n_best_size` greater start and end logits.
start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist()
end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist()
for start_index in start_indexes:
for end_index in end_indexes:
# Don't consider out-of-scope answers, either because the indices are out of bounds or correspond
# to part of the input_ids that are not in the context.
if (
start_index >= len(offset_mapping)
or end_index >= len(offset_mapping)
or offset_mapping[start_index] is None
or offset_mapping[end_index] is None
):
continue
# Don't consider answers with a length that is either = 0 or > max_answer_length.
if end_index <= start_index or end_index - start_index + 1 > max_answer_length:
continue
# Don't consider answer that don't have the maximum context available (if such information is
# provided).
if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False):
continue
prelim_predictions.append(
{
"start_index": start_index,
"end_index": end_index,
"offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]),
"score": start_logits[start_index] + end_logits[end_index],
"start_logit": start_logits[start_index],
"end_logit": end_logits[end_index],
}
)
# Only keep the best `n_best_size` predictions.
predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size]
# Use the offsets to gather the answer text in the original context.
context = example["context"]
for pred in predictions:
offsets = pred['offsets']
pred["text"] = context[offsets[0] : offsets[1]]
# In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid
# failure.
if len(predictions) == 0:
predictions.insert(0, {"text": "empty", "start_logit": 0.0, "end_logit": 0.0, "score": 0.0})
# Compute the softmax of all scores (we do it with numpy to stay independent from torch/tf in this file, using
# the LogSumExp trick).
scores = np.array([pred.pop("score") for pred in predictions])
exp_scores = np.exp(scores - np.max(scores))
probs = exp_scores / exp_scores.sum()
# Include the probabilities in our predictions.
for prob, pred in zip(probs, predictions):
pred["probability"] = prob
# need to find the best non-empty prediction.
i = 0
while i < len(predictions):
if predictions[i]['text'] != '':
break
i += 1
if i == len(predictions):
import pdb; pdb.set_trace();
best_non_null_pred = predictions[i]
all_predictions[example["id"]] = best_non_null_pred["text"]
return all_predictions
# All methods below this line are from the official SQuAD 2.0 eval script
# https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/
def normalize_answer(s):
"""Convert to lowercase and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
regex = re.compile(r'\b(a|an|the)\b', re.UNICODE)
return re.sub(regex, ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def get_tokens(s):
if not s:
return []
return normalize_answer(s).split()
def compute_em(a_gold, a_pred):
return int(normalize_answer(a_gold) == normalize_answer(a_pred))
def compute_f1(a_gold, a_pred):
gold_toks = get_tokens(a_gold)
pred_toks = get_tokens(a_pred)
common = Counter(gold_toks) & Counter(pred_toks)
num_same = sum(common.values())
if len(gold_toks) == 0 or len(pred_toks) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks)
if num_same == 0:
return 0
precision = 1.0 * num_same / len(pred_toks)
recall = 1.0 * num_same / len(gold_toks)
f1 = (2 * precision * recall) / (precision + recall)
return f1