-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfloyd-warshell.cpp
120 lines (103 loc) · 3.4 KB
/
floyd-warshell.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#include "bits/stdc++.h"
#define fio ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define all(V) (V).begin(), (V).end()
using namespace std;
typedef long long ll;
#define V 9
// A utility function to find the vertex with minimum distance value, from
// the set of vertices not yet included in shortest path tree
int minDistance(int dist[], bool sptSet[])
{
// Initialize min value
int min = INT_MAX, min_index;
for (int v = 0; v < V; v++)
if (sptSet[v] == false && dist[v] <= min)
min = dist[v], min_index = v;
return min_index;
}
void dijkstra(int graph[9][9], int src)
{
int dist[V]; // The output array. dist[i] will hold the shortest
// distance from src to i
bool sptSet[V]; // sptSet[i] will be true if vertex i is included in shortest
// path tree or shortest distance from src to i is finalized
// Initialize all distances as INFINITE and stpSet[] as false
for (int i = 0; i < V; i++)
dist[i] = INT_MAX, sptSet[i] = false;
// Distance of source vertex from itself is always 0
dist[src] = 0;
// Find shortest path for all vertices
for (int count = 0; count < V-1; count++)
{
// Pick the minimum distance vertex from the set of vertices not
// yet processed. u is always equal to src in the first iteration.
int u = minDistance(dist, sptSet);
// Mark the picked vertex as processed
sptSet[u] = true;
// Update dist value of the adjacent vertices of the picked vertex.
for (int v = 0; v < V; v++)
// Update dist[v] only if is not in sptSet, there is an edge from
// u to v, and total weight of path from src to v through u is
// smaller than current value of dist[v]
if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX
&& dist[u]+graph[u][v] < dist[v])
dist[v] = dist[u] + graph[u][v];
}
// print the constructed distance array
printSolution(dist, V);
}
int main() {fio;
freopen("input.txt", "r", stdin);
int graph[9][9] = {{0, 4, 0, 0, 0, 0, 0, 8, 0},
{4, 0, 8, 0, 0, 0, 0, 11, 0},
{0, 8, 0, 7, 0, 4, 0, 0, 2},
{0, 0, 7, 0, 9, 14, 0, 0, 0},
{0, 0, 0, 9, 0, 10, 0, 0, 0},
{0, 0, 4, 14, 10, 0, 2, 0, 0},
{0, 0, 0, 0, 0, 2, 0, 1, 6},
{8, 11, 0, 0, 0, 0, 1, 0, 7},
{0, 0, 2, 0, 0, 0, 6, 7, 0}
};
int n;
cin >> n;
vector <vector <int> > D(n, vector <int> (n, 1e9));
for(int i = 0; i < n; i++) {
string s;
cin >> s;
for(int j = 0; j < n; j++) {
if(s[j] == '1') {
D[i][j] = 1;
}
}
D[i][i] = 0;
}
for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++) {
for(int k = 0; k < n; k++) {
D[j][k] = min(D[j][k], D[j][i] + D[i][k]);
}
}
}
int m;
cin >> m;
vector <int> p(m);
for(int &u : p) {
cin >> u;
u--;
}
vector <int> ans = {p[0], p[1]};
for(int i = 2; i < m; i++) {
int y = ans.size() - 1;
while(y > 0 && D[ans[y - 1]][ans[y]] + D[ans[y]][p[i]] == D[ans[y - 1]][p[i]]) {
ans.pop_back();
y--;
}
cout<<p[i]<<endl;
ans.push_back(p[i]);
}
cout << ans.size() << endl;
for(int u : ans) {
cout << u + 1 << ' ';
}
return 0;
}