forked from jina-ai/clip-as-service
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample6.py
63 lines (44 loc) · 1.86 KB
/
example6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Han Xiao <[email protected]> <https://hanxiao.github.io>
# NOTE: First install bert-as-service via
# $
# $ pip install bert-serving-server
# $ pip install bert-serving-client
# $
# read and write TFRecord
import os
import GPUtil
import tensorflow as tf
from bert_serving.client import BertClient
os.environ['CUDA_VISIBLE_DEVICES'] = str(GPUtil.getFirstAvailable()[0])
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
with open('README.md') as fp:
data = [v for v in fp if v.strip()]
bc = BertClient()
list_vec = bc.encode(data)
list_label = [0 for _ in data] # a dummy list of all-zero labels
# write tfrecords
with tf.python_io.TFRecordWriter('tmp.tfrecord') as writer:
def create_float_feature(values):
return tf.train.Feature(float_list=tf.train.FloatList(value=values))
def create_int_feature(values):
return tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
for (vec, label) in zip(list_vec, list_label):
features = {'features': create_float_feature(vec), 'labels': create_int_feature([label])}
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
# read tfrecords and build dataset from it
num_hidden_unit = 768
def _decode_record(record):
"""Decodes a record to a TensorFlow example."""
return tf.parse_single_example(record, {
'features': tf.FixedLenFeature([num_hidden_unit], tf.float32),
'labels': tf.FixedLenFeature([], tf.int64),
})
ds = (tf.data.TFRecordDataset('tmp.tfrecord').repeat().shuffle(buffer_size=100).apply(
tf.contrib.data.map_and_batch(lambda record: _decode_record(record), batch_size=64))
.make_one_shot_iterator().get_next())
with tf.Session() as sess:
while True:
print(sess.run(ds))