forked from KoboldAI/KoboldAI-Client
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaiserver.py
4710 lines (4256 loc) · 205 KB
/
aiserver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/python3
#==================================================================#
# KoboldAI
# Version: 1.17.0
# By: KoboldAIDev and the KoboldAI Community
#==================================================================#
# External packages
import eventlet
eventlet.monkey_patch(all=True, thread=False)
import os
os.system("")
os.environ['EVENTLET_THREADPOOL_SIZE'] = '1'
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
from eventlet import tpool
from os import path, getcwd
import time
import re
import json
import collections
import zipfile
import packaging
import contextlib
import traceback
import threading
import markdown
import bleach
from collections.abc import Iterable
from typing import Any, Callable, TypeVar, Tuple, Union, Dict, Set, List
import requests
import html
import argparse
import sys
import gc
import lupa
# KoboldAI
import fileops
import gensettings
from utils import debounce
import utils
import structures
if lupa.LUA_VERSION[:2] != (5, 4):
print(f"Please install lupa==1.10. You have lupa {lupa.__version__}.", file=sys.stderr)
#==================================================================#
# Variables & Storage
#==================================================================#
# Terminal tags for colored text
class colors:
PURPLE = '\033[95m'
BLUE = '\033[94m'
CYAN = '\033[96m'
GREEN = '\033[92m'
YELLOW = '\033[93m'
RED = '\033[91m'
END = '\033[0m'
UNDERLINE = '\033[4m'
# AI models
modellist = [
["Load a model from its directory", "NeoCustom", ""],
["Load an old GPT-2 model (eg CloverEdition)", "GPT2Custom", ""],
["Skein 6B (Hybrid)", "KoboldAI/GPT-J-6B-Skein", "16GB"],
["Janeway 6B (Novel)", "KoboldAI/GPT-J-6B-Janeway", "16GB"],
["Adventure 6B", "KoboldAI/GPT-J-6B-Adventure", "16GB"],
["Lit 6B (NSFW)", "hakurei/lit-6B", "16GB"],
["Shinen 6B (NSFW)", "KoboldAI/GPT-J-6B-Shinen", "16GB"],
["C1 6B (Chatbot)", "hakurei/c1-6B", "16GB"],
["Janeway 2.7B (Novel)", "KoboldAI/GPT-Neo-2.7B-Janeway", "8GB"],
["Adventure 2.7B", "KoboldAI/GPT-Neo-2.7B-AID", "8GB"],
["Picard 2.7B (Novel)", "KoboldAI/GPT-Neo-2.7B-Picard", "8GB"],
["Horni 2.7B (NSFW)", "KoboldAI/GPT-Neo-2.7B-Horni", "8GB"],
["Horni-LN 2.7B (Novel)", "KoboldAI/GPT-Neo-2.7B-Horni-LN", "8GB"],
["Shinen 2.7B (NSFW)", "KoboldAI/GPT-Neo-2.7B-Shinen", "8GB"],
["GPT-J 6B", "EleutherAI/gpt-j-6B", "16GB"],
["GPT-Neo 2.7B", "EleutherAI/gpt-neo-2.7B", "8GB"],
["GPT-Neo 1.3B", "EleutherAI/gpt-neo-1.3B", "6GB"],
["GPT-2 XL", "gpt2-xl", "6GB"],
["GPT-2 Large", "gpt2-large", "4GB"],
["GPT-2 Med", "gpt2-medium", "2GB"],
["GPT-2", "gpt2", "2GB"],
["OpenAI API (requires API key)", "OAI", ""],
["InferKit API (requires API key)", "InferKit", ""],
["KoboldAI Server API (Old Google Colab)", "Colab", ""],
["Read Only (No AI)", "ReadOnly", ""]
]
# Variables
class vars:
lastact = "" # The last action received from the user
submission = "" # Same as above, but after applying input formatting
lastctx = "" # The last context submitted to the generator
model = "" # Model ID string chosen at startup
model_type = "" # Model Type (Automatically taken from the model config)
noai = False # Runs the script without starting up the transformers pipeline
aibusy = False # Stops submissions while the AI is working
max_length = 1024 # Maximum number of tokens to submit per action
ikmax = 3000 # Maximum number of characters to submit to InferKit
genamt = 80 # Amount of text for each action to generate
ikgen = 200 # Number of characters for InferKit to generate
rep_pen = 1.1 # Default generator repetition_penalty
rep_pen_slope = 1.0 # Default generator repetition penalty slope
rep_pen_range = 512 # Default generator repetition penalty range
temp = 0.5 # Default generator temperature
top_p = 0.9 # Default generator top_p
top_k = 0 # Default generator top_k
tfs = 1.0 # Default generator tfs (tail-free sampling)
numseqs = 1 # Number of sequences to ask the generator to create
gamestarted = False # Whether the game has started (disables UI elements)
gamesaved = True # Whether or not current game is saved
serverstarted = False # Whether or not the Flask server has started
prompt = "" # Prompt
memory = "" # Text submitted to memory field
authornote = "" # Text submitted to Author's Note field
authornotetemplate = "[Author's note: <|>]" # Author's note template
setauthornotetemplate = authornotetemplate # Saved author's note template in settings
andepth = 3 # How far back in history to append author's note
actions = structures.KoboldStoryRegister() # Actions submitted by user and AI
worldinfo = [] # List of World Info key/value objects
worldinfo_i = [] # List of World Info key/value objects sans uninitialized entries
worldinfo_u = {} # Dictionary of World Info UID - key/value pairs
wifolders_d = {} # Dictionary of World Info folder UID-info pairs
wifolders_l = [] # List of World Info folder UIDs
wifolders_u = {} # Dictionary of pairs of folder UID - list of WI UID
lua_state = None # Lua state of the Lua scripting system
lua_koboldbridge = None # `koboldbridge` from bridge.lua
lua_kobold = None # `kobold` from` bridge.lua
lua_koboldcore = None # `koboldcore` from bridge.lua
lua_logname = ... # Name of previous userscript that logged to terminal
lua_running = False # Whether or not Lua is running (i.e. wasn't stopped due to an error)
lua_edited = set() # Set of chunk numbers that were edited from a Lua generation modifier
lua_deleted = set() # Set of chunk numbers that were deleted from a Lua generation modifier
generated_tkns = 0 # If using a backend that supports Lua generation modifiers, how many tokens have already been generated, otherwise 0
abort = False # Whether or not generation was aborted by clicking on the submit button during generation
compiling = False # If using a TPU Colab, this will be set to True when the TPU backend starts compiling and then set to False again
checking = False # Whether or not we are actively checking to see if TPU backend is compiling or not
spfilename = "" # Filename of soft prompt to load, or an empty string if not using a soft prompt
userscripts = [] # List of userscripts to load
last_userscripts = [] # List of previous userscript filenames from the previous time userscripts were send via usstatitems
corescript = "default.lua" # Filename of corescript to load
# badwords = [] # Array of str/chr values that should be removed from output
badwordsids = [[13460], [6880], [50256], [42496], [4613], [17414], [22039], [16410], [27], [29], [38430], [37922], [15913], [24618], [28725], [58], [47175], [36937], [26700], [12878], [16471], [37981], [5218], [29795], [13412], [45160], [3693], [49778], [4211], [20598], [36475], [33409], [44167], [32406], [29847], [29342], [42669], [685], [25787], [7359], [3784], [5320], [33994], [33490], [34516], [43734], [17635], [24293], [9959], [23785], [21737], [28401], [18161], [26358], [32509], [1279], [38155], [18189], [26894], [6927], [14610], [23834], [11037], [14631], [26933], [46904], [22330], [25915], [47934], [38214], [1875], [14692], [41832], [13163], [25970], [29565], [44926], [19841], [37250], [49029], [9609], [44438], [16791], [17816], [30109], [41888], [47527], [42924], [23984], [49074], [33717], [31161], [49082], [30138], [31175], [12240], [14804], [7131], [26076], [33250], [3556], [38381], [36338], [32756], [46581], [17912], [49146]] # Tokenized array of badwords used to prevent AI artifacting
deletewi = None # Temporary storage for UID to delete
wirmvwhtsp = False # Whether to remove leading whitespace from WI entries
widepth = 3 # How many historical actions to scan for WI hits
mode = "play" # Whether the interface is in play, memory, or edit mode
editln = 0 # Which line was last selected in Edit Mode
gpu_device = 0 # Which PyTorch device to use when using pure GPU generation
url = "https://api.inferkit.com/v1/models/standard/generate" # InferKit API URL
oaiurl = "" # OpenAI API URL
oaiengines = "https://api.openai.com/v1/engines"
colaburl = "" # Ngrok url for Google Colab mode
apikey = "" # API key to use for InferKit API calls
oaiapikey = "" # API key to use for OpenAI API calls
savedir = getcwd()+"\stories"
hascuda = False # Whether torch has detected CUDA on the system
usegpu = False # Whether to launch pipeline with GPU support
custmodpth = "" # Filesystem location of custom model to run
formatoptns = {'frmttriminc': True, 'frmtrmblln': False, 'frmtrmspch': False, 'frmtadsnsp': False, 'singleline': False} # Container for state of formatting options
importnum = -1 # Selection on import popup list
importjs = {} # Temporary storage for import data
loadselect = "" # Temporary storage for story filename to load
spselect = "" # Temporary storage for soft prompt filename to load
spmeta = None # Metadata of current soft prompt, or None if not using a soft prompt
sp = None # Current soft prompt tensor (as a NumPy array)
sp_length = 0 # Length of current soft prompt in tokens, or 0 if not using a soft prompt
has_genmod = False # Whether or not at least one loaded Lua userscript has a generation modifier
svowname = "" # Filename that was flagged for overwrite confirm
saveow = False # Whether or not overwrite confirm has been displayed
autosave = False # Whether or not to automatically save after each action
genseqs = [] # Temporary storage for generated sequences
recentback = False # Whether Back button was recently used without Submitting or Retrying after
recentrng = None # If a new random game was recently generated without Submitting after, this is the topic used (as a string), otherwise this is None
recentrngm = None # If a new random game was recently generated without Submitting after, this is the memory used (as a string), otherwise this is None
useprompt = False # Whether to send the full prompt with every submit action
breakmodel = False # For GPU users, whether to use both system RAM and VRAM to conserve VRAM while offering speedup compared to CPU-only
bmsupported = False # Whether the breakmodel option is supported (GPT-Neo/GPT-J only, currently)
nobreakmodel = False # Something specifically requested Breakmodel to be disabled (For example a models config)
smandelete = False # Whether stories can be deleted from inside the browser
smanrename = False # Whether stories can be renamed from inside the browser
allowsp = False # Whether we are allowed to use soft prompts (by default enabled if we're using GPT-2, GPT-Neo or GPT-J)
modeldim = -1 # Embedding dimension of your model (e.g. it's 4096 for GPT-J-6B and 2560 for GPT-Neo-2.7B)
laststory = None # Filename (without extension) of most recent story JSON file we loaded
regex_sl = re.compile(r'\n*(?<=.) *\n(.|\n)*') # Pattern for limiting the output to a single line
acregex_ai = re.compile(r'\n* *>(.|\n)*') # Pattern for matching adventure actions from the AI so we can remove them
acregex_ui = re.compile(r'^ *(>.*)$', re.MULTILINE) # Pattern for matching actions in the HTML-escaped story so we can apply colouring, etc (make sure to encase part to format in parentheses)
comregex_ai = re.compile(r'(?:\n<\|(?:.|\n)*?\|>(?=\n|$))|(?:<\|(?:.|\n)*?\|>\n?)') # Pattern for matching comments to remove them before sending them to the AI
comregex_ui = re.compile(r'(<\|(?:.|\n)*?\|>)') # Pattern for matching comments in the editor
chatmode = False
chatname = "You"
adventure = False
actionmode = 1
dynamicscan = False
remote = False
nopromptgen = False
rngpersist = False
nogenmod = False
welcome = False # Custom Welcome Text (False is default)
newlinemode = "n"
#==================================================================#
# Function to get model selection at startup
#==================================================================#
def getModelSelection():
print(" # Model VRAM\n =========================================")
i = 1
for m in modellist:
print(" {0} - {1}\t\t{2}".format("{:<2}".format(i), m[0].ljust(15), m[2]))
i += 1
print(" ");
modelsel = 0
vars.model = ''
while(vars.model == ''):
modelsel = input("Model #> ")
if(modelsel.isnumeric() and int(modelsel) > 0 and int(modelsel) <= len(modellist)):
vars.model = modellist[int(modelsel)-1][1]
else:
print("{0}Please enter a valid selection.{1}".format(colors.RED, colors.END))
# If custom model was selected, get the filesystem location and store it
if(vars.model == "NeoCustom" or vars.model == "GPT2Custom"):
print("{0}Please choose the folder where pytorch_model.bin is located:{1}\n".format(colors.CYAN, colors.END))
modpath = fileops.getdirpath(getcwd(), "Select Model Folder")
if(modpath):
# Save directory to vars
vars.custmodpth = modpath
else:
# Print error and retry model selection
print("{0}Model select cancelled!{1}".format(colors.RED, colors.END))
print("{0}Select an AI model to continue:{1}\n".format(colors.CYAN, colors.END))
getModelSelection()
#==================================================================#
# Return all keys in tokenizer dictionary containing char
#==================================================================#
def gettokenids(char):
keys = []
for key in vocab_keys:
if(key.find(char) != -1):
keys.append(key)
return keys
#==================================================================#
# Return Model Name
#==================================================================#
def getmodelname():
if(args.configname):
modelname = args.configname
return modelname
if(vars.model in ("NeoCustom", "GPT2Custom", "TPUMeshTransformerGPTJ")):
modelname = os.path.basename(os.path.normpath(vars.custmodpth))
return modelname
else:
modelname = vars.model
return modelname
#==================================================================#
# Breakmodel configuration functions
#==================================================================#
def device_list(n_layers, primary=None, selected=None):
device_count = torch.cuda.device_count()
if(device_count < 2):
primary = None
gpu_blocks = breakmodel.gpu_blocks + (device_count - len(breakmodel.gpu_blocks))*[0]
print(f"{colors.YELLOW} DEVICE ID | LAYERS | DEVICE NAME{colors.END}")
for i in range(device_count):
name = torch.cuda.get_device_name(i)
if(len(name) > 47):
name = "..." + name[-44:]
row_color = colors.END
sep_color = colors.YELLOW
print(f"{row_color}{colors.YELLOW + '->' + row_color if i == selected else ' '} {'(primary)' if i == primary else ' '*9} {i:3} {sep_color}|{row_color} {gpu_blocks[i]:3} {sep_color}|{row_color} {name}{colors.END}")
row_color = colors.END
sep_color = colors.YELLOW
print(f"{row_color} {' '*9} N/A {sep_color}|{row_color} {n_layers:3} {sep_color}|{row_color} (CPU){colors.END}")
def device_config(model):
global breakmodel, generator
import breakmodel
n_layers = model.config.num_layers if hasattr(model.config, "num_layers") else model.config.n_layer
if(args.breakmodel_gpulayers is not None):
try:
breakmodel.gpu_blocks = list(map(int, args.breakmodel_gpulayers.split(',')))
assert len(breakmodel.gpu_blocks) <= torch.cuda.device_count()
s = n_layers
for i in range(len(breakmodel.gpu_blocks)):
if(breakmodel.gpu_blocks[i] <= -1):
breakmodel.gpu_blocks[i] = s
break
else:
s -= breakmodel.gpu_blocks[i]
assert sum(breakmodel.gpu_blocks) <= n_layers
n_layers -= sum(breakmodel.gpu_blocks)
except:
print("WARNING: --breakmodel_gpulayers is malformatted. Please use the --help option to see correct usage of --breakmodel_gpulayers. Defaulting to all layers on device 0.", file=sys.stderr)
breakmodel.gpu_blocks = [n_layers]
n_layers = 0
elif(args.breakmodel_layers is not None):
breakmodel.gpu_blocks = [n_layers - max(0, min(n_layers, args.breakmodel_layers))]
n_layers -= sum(breakmodel.gpu_blocks)
elif(args.model is not None):
print("Breakmodel not specified, assuming GPU 0")
breakmodel.gpu_blocks = [n_layers]
n_layers = 0
else:
device_count = torch.cuda.device_count()
if(device_count > 1):
print(colors.CYAN + "\nPlease select one of your GPUs to be your primary GPU.")
print("VRAM usage in your primary GPU will be higher than for your other ones.")
print("It is recommended you make your fastest GPU your primary GPU.")
device_list(n_layers)
while(True):
primaryselect = input("device ID> ")
if(primaryselect.isnumeric() and 0 <= int(primaryselect) < device_count):
breakmodel.primary_device = int(primaryselect)
break
else:
print(f"{colors.RED}Please enter an integer between 0 and {device_count-1}.{colors.END}")
else:
breakmodel.primary_device = 0
print(colors.PURPLE + "\nIf you don't have enough VRAM to run the model on a single GPU")
print("you can split the model between your CPU and your GPU(s), or between")
print("multiple GPUs if you have more than one.")
print("By putting more 'layers' on a GPU or CPU, more computations will be")
print("done on that device and more VRAM or RAM will be required on that device")
print("(roughly proportional to number of layers).")
print("It should be noted that GPUs are orders of magnitude faster than the CPU.")
print(f"This model has{colors.YELLOW} {n_layers} {colors.PURPLE}layers.{colors.END}\n")
for i in range(device_count):
device_list(n_layers, primary=breakmodel.primary_device, selected=i)
print(f"{colors.CYAN}\nHow many of the remaining{colors.YELLOW} {n_layers} {colors.CYAN}layers would you like to put into device {i}?\nYou can also enter -1 to allocate all remaining layers to this device.{colors.END}\n")
while(True):
layerselect = input("# of layers> ")
if((layerselect.isnumeric() or layerselect.strip() == '-1') and -1 <= int(layerselect) <= n_layers):
layerselect = int(layerselect)
layerselect = n_layers if layerselect == -1 else layerselect
breakmodel.gpu_blocks.append(layerselect)
n_layers -= layerselect
break
else:
print(f"{colors.RED}Please enter an integer between -1 and {n_layers}.{colors.END}")
if(n_layers == 0):
break
print(colors.PURPLE + "\nFinal device configuration:")
device_list(n_layers)
# If all layers are on the same device, use the old GPU generation mode
while(len(breakmodel.gpu_blocks) and breakmodel.gpu_blocks[-1] == 0):
breakmodel.gpu_blocks.pop()
if(len(breakmodel.gpu_blocks) and breakmodel.gpu_blocks[-1] in (-1, model.config.num_layers if hasattr(model.config, "num_layers") else model.config.n_layer)):
vars.breakmodel = False
vars.usegpu = True
vars.gpu_device = len(breakmodel.gpu_blocks)-1
model = model.half().to(vars.gpu_device)
generator = model.generate
return
if(not breakmodel.gpu_blocks):
print("Nothing assigned to a GPU, reverting to CPU only mode")
vars.breakmodel = False
vars.usegpu = False
model = model.to('cpu').float()
generator = model.generate
return
model.half().to('cpu')
gc.collect()
model.transformer.wte.to(breakmodel.primary_device)
model.transformer.ln_f.to(breakmodel.primary_device)
if(hasattr(model, 'lm_head')):
model.lm_head.to(breakmodel.primary_device)
if(hasattr(model.transformer, 'wpe')):
model.transformer.wpe.to(breakmodel.primary_device)
gc.collect()
GPTNeoModel.forward = breakmodel.new_forward
if("GPTJModel" in globals()):
GPTJModel.forward = breakmodel.new_forward
generator = model.generate
breakmodel.move_hidden_layers(model.transformer)
#==================================================================#
# Allow the models to override some settings
#==================================================================#
def loadmodelsettings():
try:
model_js_config = str(model_config).partition(' ')[2]
js = json.loads(model_js_config)
except Exception as e:
try:
model_js_config = open(vars.custmodpth + "/config.json", "r")
except Exception as e:
model_js_config = open(vars.custmodpth.replace('/', '_') + "/config.json", "r")
js = json.load(model_js_config)
if("badwordsids" in js):
vars.badwordsids = js["badwordsids"]
if("nobreakmodel" in js):
vars.nobreakmodel = js["nobreakmodel"]
if("temp" in js):
vars.temp = js["temp"]
if("top_p" in js):
vars.top_p = js["top_p"]
if("top_k" in js):
vars.top_k = js["top_k"]
if("tfs" in js):
vars.tfs = js["tfs"]
if("rep_pen" in js):
vars.rep_pen = js["rep_pen"]
if("rep_pen_slope" in js):
vars.rep_pen_slope = js["rep_pen_slope"]
if("rep_pen_range" in js):
vars.rep_pen_range = js["rep_pen_range"]
if("adventure" in js):
vars.adventure = js["adventure"]
if("chatmode" in js):
vars.chatmode = js["chatmode"]
if("dynamicscan" in js):
vars.dynamicscan = js["dynamicscan"]
if("formatoptns" in js):
vars.formatoptns = js["formatoptns"]
if("welcome" in js):
vars.welcome = js["welcome"]
if("newlinemode" in js):
vars.newlinemode = js["newlinemode"]
if("antemplate" in js):
vars.setauthornotetemplate = js["antemplate"]
if(not vars.gamestarted):
vars.authornotetemplate = vars.setauthornotetemplate
#==================================================================#
# Startup
#==================================================================#
# Parsing Parameters
parser = argparse.ArgumentParser(description="KoboldAI Server")
parser.add_argument("--remote", action='store_true', help="Optimizes KoboldAI for Remote Play")
parser.add_argument("--ngrok", action='store_true', help="Optimizes KoboldAI for Remote Play using Ngrok")
parser.add_argument("--model", help="Specify the Model Type to skip the Menu")
parser.add_argument("--path", help="Specify the Path for local models (For model NeoCustom or GPT2Custom)")
parser.add_argument("--cpu", action='store_true', help="By default unattended launches are on the GPU use this option to force CPU usage.")
parser.add_argument("--breakmodel", action='store_true', help=argparse.SUPPRESS)
parser.add_argument("--breakmodel_layers", type=int, help=argparse.SUPPRESS)
parser.add_argument("--breakmodel_gpulayers", type=str, help="If using a model that supports hybrid generation, this is a comma-separated list that specifies how many layers to put on each GPU device. For example to put 8 layers on device 0, 9 layers on device 1 and 11 layers on device 2, use --beakmodel_gpulayers 8,9,11")
parser.add_argument("--override_delete", action='store_true', help="Deleting stories from inside the browser is disabled if you are using --remote and enabled otherwise. Using this option will instead allow deleting stories if using --remote and prevent deleting stories otherwise.")
parser.add_argument("--override_rename", action='store_true', help="Renaming stories from inside the browser is disabled if you are using --remote and enabled otherwise. Using this option will instead allow renaming stories if using --remote and prevent renaming stories otherwise.")
parser.add_argument("--configname", help="Force a fixed configuration name to aid with config management.")
parser.add_argument("--colab", action='store_true', help="Optimize for Google Colab.")
parser.add_argument("--nobreakmodel", action='store_true', help="Disables Breakmodel support completely.")
args: argparse.Namespace = None
if(os.environ.get("KOBOLDAI_ARGS") is not None):
import shlex
args = parser.parse_args(shlex.split(os.environ["KOBOLDAI_ARGS"]))
else:
args = parser.parse_args()
vars.model = args.model;
if args.colab:
args.remote = True;
args.override_rename = True;
args.override_delete = True;
args.nobreakmodel = True;
if args.nobreakmodel:
vars.nobreakmodel = True;
if args.remote:
vars.remote = True;
if args.ngrok:
vars.remote = True;
vars.smandelete = vars.remote == args.override_delete
vars.smanrename = vars.remote == args.override_rename
# Select a model to run
if args.model:
print("Welcome to KoboldAI!\nYou have selected the following Model:", vars.model)
if args.path:
print("You have selected the following path for your Model :", args.path)
vars.custmodpth = args.path;
vars.colaburl = args.path + "/request"; # Lets just use the same parameter to keep it simple
else:
print("{0}Welcome to the KoboldAI Server!\nListed RAM is the optimal VRAM and CPU ram can be up to twice the amount.\nMost models can run at less VRAM with reduced max tokens or less layers on the GPU.\nSelect an AI model to continue:{1}\n".format(colors.CYAN, colors.END))
getModelSelection()
# If transformers model was selected & GPU available, ask to use CPU or GPU
if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly", "TPUMeshTransformerGPTJ"]):
vars.allowsp = True
# Test for GPU support
import torch
# Make model path the same as the model name to make this consistent with the other loading method if it isn't a known model type
# This code is not just a workaround for below, it is also used to make the behavior consistent with other loading methods - Henk717
if(not vars.model in ["NeoCustom", "GPT2Custom"]):
vars.custmodpth = vars.model
elif(vars.model == "NeoCustom"):
vars.model = os.path.basename(os.path.normpath(vars.custmodpth))
# Get the model_type from the config or assume a model type if it isn't present
from transformers import AutoConfig
if(os.path.isdir(vars.custmodpth.replace('/', '_'))):
try:
model_config = AutoConfig.from_pretrained(vars.custmodpth.replace('/', '_'), cache_dir="cache/")
vars.model_type = model_config.model_type
except ValueError as e:
vars.model_type = "not_found"
else:
try:
model_config = AutoConfig.from_pretrained(vars.custmodpth, cache_dir="cache/")
vars.model_type = model_config.model_type
except ValueError as e:
vars.model_type = "not_found"
if(vars.model_type == "not_found" and vars.model == "NeoCustom"):
vars.model_type = "gpt_neo"
elif(vars.model_type == "not_found" and vars.model == "GPT2Custom"):
vars.model_type = "gpt2"
elif(vars.model_type == "not_found"):
print("WARNING: No model type detected, assuming Neo (If this is a GPT2 model use the other menu option or --model GPT2Custom)")
vars.model_type = "gpt_neo"
loadmodelsettings()
print("{0}Looking for GPU support...{1}".format(colors.PURPLE, colors.END), end="")
vars.hascuda = torch.cuda.is_available()
vars.bmsupported = vars.model_type in ("gpt_neo", "gptj") and not vars.nobreakmodel
if(args.breakmodel is not None and args.breakmodel):
print("WARNING: --breakmodel is no longer supported. Breakmodel mode is now automatically enabled when --breakmodel_gpulayers is used (see --help for details).", file=sys.stderr)
if(args.breakmodel_layers is not None):
print("WARNING: --breakmodel_layers is deprecated. Use --breakmodel_gpulayers instead (see --help for details).", file=sys.stderr)
if(args.model and vars.bmsupported and not args.breakmodel_gpulayers and not args.breakmodel_layers):
print("WARNING: Model launched without the --breakmodel_gpulayers argument, defaulting to GPU only mode.", file=sys.stderr)
vars.bmsupported = False
if(not vars.bmsupported and (args.breakmodel_gpulayers is not None or args.breakmodel_layers is not None)):
print("WARNING: This model does not support hybrid generation. --breakmodel_gpulayers will be ignored.", file=sys.stderr)
if(vars.hascuda):
print("{0}FOUND!{1}".format(colors.GREEN, colors.END))
else:
print("{0}NOT FOUND!{1}".format(colors.YELLOW, colors.END))
if args.model:
if(vars.hascuda):
genselected = True
vars.usegpu = True
vars.breakmodel = False
if(vars.bmsupported):
vars.usegpu = False
vars.breakmodel = True
if(args.cpu):
vars.usegpu = False
vars.breakmodel = False
elif(vars.hascuda):
if(vars.bmsupported):
genselected = True
vars.usegpu = False
vars.breakmodel = True
else:
print(" 1 - GPU\n 2 - CPU\n")
genselected = False
else:
genselected = False
if(vars.hascuda):
while(genselected == False):
genselect = input("Mode> ")
if(genselect == ""):
vars.breakmodel = False
vars.usegpu = True
genselected = True
elif(genselect.isnumeric() and int(genselect) == 1):
if(vars.bmsupported):
vars.breakmodel = True
vars.usegpu = False
genselected = True
else:
vars.breakmodel = False
vars.usegpu = True
genselected = True
elif(genselect.isnumeric() and int(genselect) == 2):
vars.breakmodel = False
vars.usegpu = False
genselected = True
else:
print("{0}Please enter a valid selection.{1}".format(colors.RED, colors.END))
# Ask for API key if InferKit was selected
if(vars.model == "InferKit"):
if(not path.exists("settings/" + getmodelname().replace('/', '_') + ".settings")):
# If the client settings file doesn't exist, create it
print("{0}Please enter your InferKit API key:{1}\n".format(colors.CYAN, colors.END))
vars.apikey = input("Key> ")
# Write API key to file
os.makedirs('settings', exist_ok=True)
file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "w")
try:
js = {"apikey": vars.apikey}
file.write(json.dumps(js, indent=3))
finally:
file.close()
else:
# Otherwise open it up
file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "r")
# Check if API key exists
js = json.load(file)
if("apikey" in js and js["apikey"] != ""):
# API key exists, grab it and close the file
vars.apikey = js["apikey"]
file.close()
else:
# Get API key, add it to settings object, and write it to disk
print("{0}Please enter your InferKit API key:{1}\n".format(colors.CYAN, colors.END))
vars.apikey = input("Key> ")
js["apikey"] = vars.apikey
# Write API key to file
file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "w")
try:
file.write(json.dumps(js, indent=3))
finally:
file.close()
# Ask for API key if OpenAI was selected
if(vars.model == "OAI"):
if(not path.exists("settings/" + getmodelname().replace('/', '_') + ".settings")):
# If the client settings file doesn't exist, create it
print("{0}Please enter your OpenAI API key:{1}\n".format(colors.CYAN, colors.END))
vars.oaiapikey = input("Key> ")
# Write API key to file
os.makedirs('settings', exist_ok=True)
file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "w")
try:
js = {"oaiapikey": vars.oaiapikey}
file.write(json.dumps(js, indent=3))
finally:
file.close()
else:
# Otherwise open it up
file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "r")
# Check if API key exists
js = json.load(file)
if("oaiapikey" in js and js["oaiapikey"] != ""):
# API key exists, grab it and close the file
vars.oaiapikey = js["oaiapikey"]
file.close()
else:
# Get API key, add it to settings object, and write it to disk
print("{0}Please enter your OpenAI API key:{1}\n".format(colors.CYAN, colors.END))
vars.oaiapikey = input("Key> ")
js["oaiapikey"] = vars.oaiapikey
# Write API key to file
file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "w")
try:
file.write(json.dumps(js, indent=3))
finally:
file.close()
# Get list of models from OAI
print("{0}Retrieving engine list...{1}".format(colors.PURPLE, colors.END), end="")
req = requests.get(
vars.oaiengines,
headers = {
'Authorization': 'Bearer '+vars.oaiapikey
}
)
if(req.status_code == 200):
print("{0}OK!{1}".format(colors.GREEN, colors.END))
print("{0}Please select an engine to use:{1}\n".format(colors.CYAN, colors.END))
engines = req.json()["data"]
# Print list of engines
i = 0
for en in engines:
print(" {0} - {1} ({2})".format(i, en["id"], "\033[92mready\033[0m" if en["ready"] == True else "\033[91mnot ready\033[0m"))
i += 1
# Get engine to use
print("")
engselected = False
while(engselected == False):
engine = input("Engine #> ")
if(engine.isnumeric() and int(engine) < len(engines)):
vars.oaiurl = "https://api.openai.com/v1/engines/{0}/completions".format(engines[int(engine)]["id"])
engselected = True
else:
print("{0}Please enter a valid selection.{1}".format(colors.RED, colors.END))
else:
# Something went wrong, print the message and quit since we can't initialize an engine
print("{0}ERROR!{1}".format(colors.RED, colors.END))
print(req.json())
quit()
# Ask for ngrok url if Google Colab was selected
if(vars.model == "Colab"):
if(vars.colaburl == ""):
print("{0}NOTE: For the modern KoboldAI Colab's you open the links directly in your browser.\nThis option is only for the KoboldAI Server API, not all features are supported in this mode.\n".format(colors.YELLOW, colors.END))
print("{0}Enter the URL of the server (For example a trycloudflare link):{1}\n".format(colors.CYAN, colors.END))
vars.colaburl = input("URL> ") + "/request"
if(vars.model == "ReadOnly"):
vars.noai = True
# Set logging level to reduce chatter from Flask
import logging
log = logging.getLogger('werkzeug')
log.setLevel(logging.ERROR)
# Start flask & SocketIO
print("{0}Initializing Flask... {1}".format(colors.PURPLE, colors.END), end="")
from flask import Flask, render_template, Response, request, copy_current_request_context
from flask_socketio import SocketIO, emit
app = Flask(__name__)
app.config['SECRET KEY'] = 'secret!'
socketio = SocketIO(app, async_method="eventlet")
print("{0}OK!{1}".format(colors.GREEN, colors.END))
# Start transformers and create pipeline
if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly", "TPUMeshTransformerGPTJ"]):
if(not vars.noai):
print("{0}Initializing transformers, please wait...{1}".format(colors.PURPLE, colors.END))
from transformers import StoppingCriteria, GPT2TokenizerFast, GPT2LMHeadModel, GPTNeoForCausalLM, GPTNeoModel, AutoModelForCausalLM, AutoTokenizer
try:
from transformers import GPTJModel
except:
pass
import transformers.generation_utils
from transformers import __version__ as transformers_version
# Patch transformers to use our soft prompt
def patch_causallm(cls):
old_forward = cls.forward
def new_causallm_forward(self, *args, **kwargs):
input_ids = kwargs.get('input_ids').to(self.device)
assert input_ids is not None
kwargs['input_ids'] = None
if(vars.sp is not None):
shifted_input_ids = input_ids - self.config.vocab_size
input_ids.clamp_(max=self.config.vocab_size-1)
inputs_embeds = self.transformer.wte(input_ids)
if(vars.sp is not None):
vars.sp = vars.sp.to(inputs_embeds.dtype).to(inputs_embeds.device)
inputs_embeds = torch.where(
(shifted_input_ids >= 0)[..., None],
vars.sp[shifted_input_ids.clamp(min=0)],
inputs_embeds,
)
kwargs['inputs_embeds'] = inputs_embeds
return old_forward(self, *args, **kwargs)
cls.forward = new_causallm_forward
for cls in (GPT2LMHeadModel, GPTNeoForCausalLM):
patch_causallm(cls)
try:
from transformers import GPTJForCausalLM
patch_causallm(GPTJForCausalLM)
except:
pass
# Patch transformers to use our custom logit warpers
from transformers import LogitsProcessorList, LogitsWarper, LogitsProcessor, TopKLogitsWarper, TopPLogitsWarper, TemperatureLogitsWarper, RepetitionPenaltyLogitsProcessor
from warpers import AdvancedRepetitionPenaltyLogitsProcessor, TailFreeLogitsWarper
def dynamic_processor_wrap(cls, field_name, var_name, cond=None):
old_call = cls.__call__
def new_call(self, *args, **kwargs):
if(not isinstance(field_name, str) and isinstance(field_name, Iterable)):
conds = []
for f, v in zip(field_name, var_name):
conds.append(getattr(vars, v))
setattr(self, f, conds[-1])
else:
conds = getattr(vars, var_name)
setattr(self, field_name, conds)
assert len(args) == 2
if(cond is None or cond(conds)):
return old_call(self, *args, **kwargs)
return args[1]
cls.__call__ = new_call
dynamic_processor_wrap(AdvancedRepetitionPenaltyLogitsProcessor, ("penalty", "penalty_slope", "penalty_range"), ("rep_pen", "rep_pen_slope", "rep_pen_range"), cond=lambda x: x[0] != 1.0)
dynamic_processor_wrap(TopKLogitsWarper, "top_k", "top_k", cond=lambda x: x > 0)
dynamic_processor_wrap(TopPLogitsWarper, "top_p", "top_p", cond=lambda x: x < 1.0)
dynamic_processor_wrap(TailFreeLogitsWarper, "tfs", "tfs", cond=lambda x: x < 1.0)
dynamic_processor_wrap(TemperatureLogitsWarper, "temperature", "temp", cond=lambda x: x != 1.0)
RepetitionPenaltyLogitsProcessor.__init__ = AdvancedRepetitionPenaltyLogitsProcessor.__init__
RepetitionPenaltyLogitsProcessor.__call__ = AdvancedRepetitionPenaltyLogitsProcessor.__call__
class LuaLogitsProcessor(LogitsProcessor):
def __init__(self):
pass
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
assert scores.ndim == 2
assert input_ids.ndim == 2
self.regeneration_required = False
self.halt = False
scores_shape = scores.shape
scores_list = scores.tolist()
vars.lua_koboldbridge.logits = vars.lua_state.table()
for r, row in enumerate(scores_list):
vars.lua_koboldbridge.logits[r+1] = vars.lua_state.table(*row)
vars.lua_koboldbridge.vocab_size = scores_shape[-1]
execute_genmod()
scores = torch.tensor(
tuple(tuple(row.values()) for row in vars.lua_koboldbridge.logits.values()),
device=scores.device,
dtype=scores.dtype,
)
assert scores.shape == scores_shape
return scores
def new_get_logits_processor(*args, **kwargs) -> LogitsProcessorList:
processors = new_get_logits_processor.old_get_logits_processor(*args, **kwargs)
processors.insert(0, LuaLogitsProcessor())
return processors
new_get_logits_processor.old_get_logits_processor = transformers.generation_utils.GenerationMixin._get_logits_processor
transformers.generation_utils.GenerationMixin._get_logits_processor = new_get_logits_processor
def new_get_logits_warper(beams: int = 1,) -> LogitsProcessorList:
warper_list = LogitsProcessorList()
warper_list.append(TopKLogitsWarper(top_k=1, min_tokens_to_keep=1 + (beams > 1)))
warper_list.append(TopPLogitsWarper(top_p=0.5, min_tokens_to_keep=1 + (beams > 1)))
warper_list.append(TailFreeLogitsWarper(tfs=0.5, min_tokens_to_keep=1 + (beams > 1)))
warper_list.append(TemperatureLogitsWarper(temperature=0.5))
return warper_list
def new_sample(self, *args, **kwargs):
assert kwargs.pop("logits_warper", None) is not None
kwargs["logits_warper"] = new_get_logits_warper(
beams=1,
)
return new_sample.old_sample(self, *args, **kwargs)
new_sample.old_sample = transformers.generation_utils.GenerationMixin.sample
transformers.generation_utils.GenerationMixin.sample = new_sample
# Allow bad words filter to ban <|endoftext|> token
import transformers.generation_logits_process
def new_init(self, bad_words_ids: List[List[int]], eos_token_id: int):
return new_init.old_init(self, bad_words_ids, -1)
new_init.old_init = transformers.generation_logits_process.NoBadWordsLogitsProcessor.__init__
transformers.generation_logits_process.NoBadWordsLogitsProcessor.__init__ = new_init
# Sets up dynamic world info scanner
class DynamicWorldInfoScanCriteria(StoppingCriteria):
def __init__(
self,
tokenizer,
excluded_world_info: List[Set],
):
self.regeneration_required = False
self.halt = False
self.tokenizer = tokenizer
self.excluded_world_info = excluded_world_info
def __call__(
self,
input_ids: torch.LongTensor,
scores: torch.FloatTensor,
**kwargs,
) -> bool:
vars.generated_tkns += 1
if(vars.lua_koboldbridge.generated_cols and vars.generated_tkns != vars.lua_koboldbridge.generated_cols):
raise RuntimeError(f"Inconsistency detected between KoboldAI Python and Lua backends ({vars.generated_tkns} != {vars.lua_koboldbridge.generated_cols})")
if(vars.abort or vars.generated_tkns >= vars.genamt):
self.regeneration_required = False
self.halt = False
return True
assert input_ids.ndim == 2
assert len(self.excluded_world_info) == input_ids.shape[0]
self.regeneration_required = vars.lua_koboldbridge.regeneration_required
self.halt = not vars.lua_koboldbridge.generating
vars.lua_koboldbridge.regeneration_required = False
for i in range(vars.numseqs):
vars.lua_koboldbridge.generated[i+1][vars.generated_tkns] = int(input_ids[i, -1].item())
if(not vars.dynamicscan):
return self.regeneration_required or self.halt
tail = input_ids[..., -vars.generated_tkns:]
for i, t in enumerate(tail):
decoded = tokenizer.decode(t)
_, found = checkworldinfo(decoded, force_use_txt=True, actions=vars._actions)
found -= self.excluded_world_info[i]
if(len(found) != 0):
self.regeneration_required = True
break
return self.regeneration_required or self.halt
old_get_stopping_criteria = transformers.generation_utils.GenerationMixin._get_stopping_criteria
def new_get_stopping_criteria(self, *args, **kwargs):
stopping_criteria = old_get_stopping_criteria(self, *args, **kwargs)
global tokenizer
self.kai_scanner = DynamicWorldInfoScanCriteria(
tokenizer=tokenizer,
excluded_world_info=self.kai_scanner_excluded_world_info,
)
stopping_criteria.insert(0, self.kai_scanner)
return stopping_criteria
transformers.generation_utils.GenerationMixin._get_stopping_criteria = new_get_stopping_criteria
def get_hidden_size_from_model(model):
try:
return int(model.transformer.hidden_size)
except:
try:
return int(model.transformer.embed_dim)
except:
return int(model.lm_head.in_features)
def maybe_low_cpu_mem_usage() -> Dict[str, Any]:
if(packaging.version.parse(transformers_version) < packaging.version.parse("4.11.0")):
print(f"\nWARNING: Please upgrade to transformers 4.11.0 for lower RAM usage. You have transformers {transformers_version}.", file=sys.stderr)
return {}
return {"low_cpu_mem_usage": True}
@contextlib.contextmanager
def maybe_use_float16(always_use=False):
if(always_use or (vars.hascuda and (vars.usegpu or vars.breakmodel))):
original_dtype = torch.get_default_dtype()
torch.set_default_dtype(torch.float16)
yield True
torch.set_default_dtype(original_dtype)
else:
yield False
# If custom GPT2 model was chosen
if(vars.model == "GPT2Custom"):
model_config = open(vars.custmodpth + "/config.json", "r")
js = json.load(model_config)
with(maybe_use_float16()):
model = GPT2LMHeadModel.from_pretrained(vars.custmodpth, cache_dir="cache/")
tokenizer = GPT2TokenizerFast.from_pretrained(vars.custmodpth, cache_dir="cache/")
vars.modeldim = get_hidden_size_from_model(model)
# Is CUDA available? If so, use GPU, otherwise fall back to CPU
if(vars.hascuda and vars.usegpu):
model = model.half().to(vars.gpu_device)
generator = model.generate
else:
model = model.to('cpu').float()
generator = model.generate
# Use the Generic implementation
else:
lowmem = maybe_low_cpu_mem_usage()
# We must disable low_cpu_mem_usage (by setting lowmem to {}) if
# using a GPT-2 model because GPT-2 is not compatible with this
# feature yet
if(vars.model_type == "gpt2"):
lowmem = {}
# Download model from Huggingface if it does not exist, otherwise load locally
if(os.path.isdir(vars.custmodpth)):
with(maybe_use_float16()):
try:
tokenizer = AutoTokenizer.from_pretrained(vars.custmodpth, cache_dir="cache/")
except ValueError as e:
tokenizer = GPT2TokenizerFast.from_pretrained(vars.custmodpth, cache_dir="cache/")
try:
model = AutoModelForCausalLM.from_pretrained(vars.custmodpth, cache_dir="cache/", **lowmem)
except ValueError as e:
model = GPTNeoForCausalLM.from_pretrained(vars.custmodpth, cache_dir="cache/", **lowmem)
elif(os.path.isdir(vars.model.replace('/', '_'))):
with(maybe_use_float16()):
try:
tokenizer = AutoTokenizer.from_pretrained(vars.model.replace('/', '_'), cache_dir="cache/")
except ValueError as e:
tokenizer = GPT2TokenizerFast.from_pretrained(vars.model.replace('/', '_'), cache_dir="cache/")
try:
model = AutoModelForCausalLM.from_pretrained(vars.model.replace('/', '_'), cache_dir="cache/", **lowmem)
except ValueError as e:
model = GPTNeoForCausalLM.from_pretrained(vars.model.replace('/', '_'), cache_dir="cache/", **lowmem)
else:
try:
tokenizer = AutoTokenizer.from_pretrained(vars.model, cache_dir="cache/")
except ValueError as e:
tokenizer = GPT2TokenizerFast.from_pretrained(vars.model, cache_dir="cache/")
with(maybe_use_float16()):
try:
model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache/", **lowmem)
except ValueError as e:
model = GPTNeoForCausalLM.from_pretrained(vars.model, cache_dir="cache/", **lowmem)
if not args.colab:
model = model.half()
import shutil
shutil.rmtree("cache/")
model.save_pretrained(vars.model.replace('/', '_'))
tokenizer.save_pretrained(vars.model.replace('/', '_'))