-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathcontinue_lwf.py
executable file
·368 lines (313 loc) · 16.1 KB
/
continue_lwf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
import os
import argparse
import time
import warnings
warnings.filterwarnings("ignore")
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel
from tensorboardX import SummaryWriter
from monai.losses import DiceCELoss
from monai.inferers import sliding_window_inference
from monai.data import load_decathlon_datalist, decollate_batch, DistributedSampler
from monai.transforms import AsDiscrete
from monai.metrics import DiceMetric
from model.swinunetr import SwinUNETR
from model.swinunetr_partial_onehot import SwinUNETR as SwinUNETR_onehot
from model.swinunetr_partial_v3 import SwinUNETR as SwinUNETR_partial_v3
from dataset.dataloader_continue import get_loader
from utils import loss
from optimizers.lr_scheduler import LinearWarmupCosineAnnealingLR
torch.multiprocessing.set_sharing_strategy('file_system')
class DiceLoss(nn.Module):
def __init__(self, weight=None, ignore_index=None, num_classes=3, **kwargs):
super(DiceLoss, self).__init__()
self.kwargs = kwargs
self.weight = weight
self.ignore_index = ignore_index
self.num_classes = num_classes
self.dice = loss.BinaryDiceLoss(**self.kwargs)
def forward(self, predict, target, organ_list):
total_loss = []
predict = F.sigmoid(predict)
total_loss = []
B = predict.shape[0]
for b in range(B):
for organ in organ_list:
dice_loss = self.dice(predict[b, organ-1], target[b, organ-1])
total_loss.append(dice_loss)
total_loss = torch.stack(total_loss)
return total_loss.sum()/total_loss.shape[0]
class Multi_BCELoss(nn.Module):
def __init__(self, ignore_index=None, num_classes=3, **kwargs):
super(Multi_BCELoss, self).__init__()
self.kwargs = kwargs
self.num_classes = num_classes
self.ignore_index = ignore_index
self.criterion = nn.BCEWithLogitsLoss()
def forward(self, predict, target, organ_list):
assert predict.shape[2:] == target.shape[2:], 'predict & target shape do not match'
total_loss = []
B = predict.shape[0]
for b in range(B):
for organ in organ_list:
ce_loss = self.criterion(predict[b, organ-1], target[b, organ-1])
total_loss.append(ce_loss)
total_loss = torch.stack(total_loss)
return total_loss.sum()/total_loss.shape[0]
def train(args, train_loader, model, optimizer, loss_func_dice, loss_func_bce, loss_func_ce):
model.train()
loss_bce_ave = 0
loss_ce_ave = 0
loss_dice_ave = 0
epoch_iterator = tqdm(
train_loader, desc="Training (X / X Steps) (loss=X.X)", dynamic_ncols=True
)
for step, batch in enumerate(epoch_iterator):
x, y, name = batch["image"].to(args.device), batch["post_label"].float().to(args.device), batch['name']
logit_map = model(x)[-1]
if args.out_nonlinear == 'sigmoid':
print(torch.nonzero(y[:, :, 48, 48, 48] == 1)[:, 1] + 1)
term_seg_Dice = loss_func_dice.forward(logit_map, y, args.organ_list)
term_seg_BCE = loss_func_bce.forward(logit_map, y, args.organ_list)
old_dice = loss_func_dice(logit_map, y, args.old_organ_list)
old_bce = loss_func_bce(logit_map, y, args.old_organ_list)
loss = term_seg_BCE + term_seg_Dice + old_dice + old_bce
loss_bce_ave += term_seg_BCE.item() + old_bce.item()
loss_dice_ave += term_seg_Dice.item() + old_dice.item()
epoch_iterator.set_description(
"Epoch=%d: Training (%d / %d Steps) (dice_loss=%2.5f, bce_loss=%2.5f)" % (
args.epoch, step, len(train_loader), term_seg_Dice.item(), term_seg_BCE.item())
)
elif args.out_nonlinear == 'softmax':
b, c, d, h, w = y.shape
label = y.new_zeros((b, d, h, w), dtype=torch.long)
for icls in args.organ_list + args.old_organ_list:
label[y[:, icls-1] == 1] = icls
# old_label = y.new_zeros((b, d, h, w), dtype=torch.long)
# for icls in args.old_organ_list:
# old_label[y[:, icls-1] == 1] = icls
print(label[:, 48, 48, 48])
term_seg_Dice = loss_func_dice.forward(logit_map[:, 1:], y, args.organ_list)
term_seg_CE = loss_func_ce(logit_map, label)
old_dice = loss_func_dice(logit_map[:, 1:], y, args.old_organ_list)
# old_ce = loss_func_ce(logit_map, old_label)
loss = term_seg_Dice + term_seg_CE + old_dice
loss_ce_ave += term_seg_CE.item()
loss_dice_ave += term_seg_Dice.item()
epoch_iterator.set_description(
"Epoch=%d: Training (%d / %d Steps) (dice_loss=%2.5f, ce_loss=%2.5f)" % (
args.epoch, step, len(train_loader), term_seg_Dice.item(), term_seg_CE.item())
)
loss.backward()
optimizer.step()
optimizer.zero_grad()
torch.cuda.empty_cache()
if args.out_nonlinear == 'sigmoid':
print('Epoch=%d: ave_dice_loss=%2.5f, ave_bce_loss=%2.5f' % (args.epoch, loss_dice_ave/len(epoch_iterator), loss_bce_ave/len(epoch_iterator)))
elif args.out_nonlinear == 'softmax':
print('Epoch=%d: ave_dice_loss=%2.5f, ave_ce_loss=%2.5f' % (args.epoch, loss_dice_ave/len(epoch_iterator), loss_ce_ave/len(epoch_iterator)))
return loss_dice_ave / len(epoch_iterator), loss_bce_ave / len(epoch_iterator), loss_ce_ave / len(epoch_iterator)
def process(args):
rank = 0
if args.dist:
dist.init_process_group(backend="nccl", init_method="env://")
rank = args.local_rank
args.device = torch.device(f"cuda:{rank}")
torch.cuda.set_device(args.device)
# prepare the 3D model
if args.model == 'swinunetr_partial':
model = SwinUNETR_partial_v3(
img_size=(args.roi_x, args.roi_y, args.roi_z),
in_channels=1,
out_channels=args.out_channels,
feature_size=48,
drop_rate=0.0,
attn_drop_rate=0.0,
dropout_path_rate=0.0,
use_checkpoint=False,
encoding=args.trans_encoding,
)
elif args.model == 'swinunetr':
model = SwinUNETR(
img_size=(args.roi_x, args.roi_y, args.roi_z),
in_channels=1,
out_channels=args.out_channels,
feature_size=48,
drop_rate=0.0,
attn_drop_rate=0.0,
dropout_path_rate=0.0,
use_checkpoint=False,
)
elif args.model == 'our_onehot':
model = SwinUNETR_onehot(
img_size=(args.roi_x, args.roi_y, args.roi_z),
in_channels=1,
out_channels=args.out_channels,
feature_size=48,
drop_rate=0.0,
attn_drop_rate=0.0,
dropout_path_rate=0.0,
use_checkpoint=False,
encoding=args.trans_encoding,
)
#Load pre-trained weights
store_dict = model.state_dict()
pretrain_checkpoint = torch.load(args.pretrain)
if 'state_dict' in pretrain_checkpoint:
model_dict = pretrain_checkpoint["state_dict"]
else:
model_dict = pretrain_checkpoint['net']
torch.nn.modules.utils.consume_prefix_in_state_dict_if_present(
model_dict, "module."
)
for key in model_dict.keys():
# if 'out' not in key:
# store_dict[key] = model_dict[key]
# else:
# print(f'{key} is not in model state dict')
store_dict[key] = model_dict[key]
model.load_state_dict(store_dict)
print('Use pretrained weights')
if args.model == 'swinunetr_partial' and args.trans_encoding == 'word_embedding':
word_embedding = torch.load(args.word_embedding)
model.organ_embedding.data = word_embedding.float()
print('load word embedding')
model.to(args.device)
model.train()
if args.dist:
model = DistributedDataParallel(model, device_ids=[args.device])
# criterion and optimizer
# loss_function = DiceCELoss(to_onehot_y=True, softmax=True)
loss_func_dice = DiceLoss().to(args.device)
loss_func_bce = Multi_BCELoss().to(args.device)
weight = torch.ones(args.out_channels).cuda()
# weight[27] = 100
loss_func_ce = nn.CrossEntropyLoss(weight)
if args.model in ['swinunetr_partial', 'our_onehot'] :
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
elif args.model == 'swinunetr':
model_params = [v for k, v in model.named_parameters() if 'out' not in k]
class_params = model.out.parameters()
optimizer = torch.optim.AdamW(
[{'params': class_params, 'lr': args.lr},
{'params': model_params}],
lr=args.lr, weight_decay=args.weight_decay)
scheduler = LinearWarmupCosineAnnealingLR(optimizer, warmup_epochs=args.warmup_epoch, max_epochs=args.max_epoch)
if args.resume:
checkpoint = torch.load(args.resume)
if args.dist:
model.load_state_dict(checkpoint['net'])
else:
store_dict = model.state_dict()
model_dict = checkpoint['net']
for key in model_dict.keys():
store_dict['.'.join(key.split('.')[1:])] = model_dict[key]
model.load_state_dict(store_dict)
optimizer.load_state_dict(checkpoint['optimizer'])
args.epoch = checkpoint['epoch']
scheduler.load_state_dict(checkpoint['scheduler'])
print('success resume from ', args.resume)
torch.backends.cudnn.benchmark = True
train_loader, train_sampler = get_loader(args)
if rank == 0:
writer = SummaryWriter(log_dir=os.path.join(args.log_dir, args.log_name))
print('Writing Tensorboard logs to ', os.path.join(args.log_dir, args.log_name))
if not os.path.isdir(os.path.join(args.log_dir, args.log_name)):
os.mkdir(os.path.join(args.log_dir, args.log_name))
while args.epoch < args.max_epoch:
if args.dist:
dist.barrier()
train_sampler.set_epoch(args.epoch)
scheduler.step()
loss_dice, loss_bce, loss_ce = train(args, train_loader, model, optimizer, loss_func_dice, loss_func_bce, loss_func_ce)
if rank == 0:
writer.add_scalar('train_dice_loss', loss_dice, args.epoch)
writer.add_scalar('train_bce_loss', loss_bce, args.epoch)
writer.add_scalar('train_ce_loss', loss_ce, args.epoch)
# writer.add_scalar('lr', scheduler.get_lr(), args.epoch)
if (args.epoch % args.store_num == 0 and args.epoch != 0) and rank == 0:
checkpoint = {
"net": model.state_dict(),
'optimizer':optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
"epoch": args.epoch
}
torch.save(checkpoint, os.path.join(args.log_dir, args.log_name, f'epoch_{args.epoch}.pth'))
print('save model success')
args.epoch += 1
if args.dist:
dist.destroy_process_group()
def main():
parser = argparse.ArgumentParser()
## for distributed training
parser.add_argument('--dist', default=False, action='store_true', help='distributed training or not')
parser.add_argument("--local_rank", type=int)
parser.add_argument("--device")
parser.add_argument("--epoch", default=0)
## logging
parser.add_argument('--log_dir', default='output', help='Log directory.')
parser.add_argument('--log_name', type=str, required=True, help='Experiment name under the log dir.')
## model load
parser.add_argument('--model', type=str, choices=['swinunetr', 'swinunetr_partial', 'our_onehot'])
parser.add_argument('--resume', default=None, help='The path resume from checkpoint')
parser.add_argument('--pretrain', default='./pretrained_weights/swin_unetr.base_5000ep_f48_lr2e-4_pretrained.pt',
help='The path of pretrain model')
parser.add_argument('--trans_encoding', default='word_embedding',
help='the type of encoding: rand_embedding or word_embedding')
parser.add_argument('--word_embedding', default='./pretrained_weights/txt_encoding.pth',
help='The path of word embedding')
parser.add_argument('--out_nonlinear', type=str, choices=['softmax', 'sigmoid'])
parser.add_argument('--out_channels', type=int)
## hyperparameter
parser.add_argument('--max_epoch', default=2000, type=int, help='Number of training epoches')
parser.add_argument('--store_num', default=10, type=int, help='Store model how often')
parser.add_argument('--warmup_epoch', default=100, type=int, help='number of warmup epochs')
parser.add_argument('--lr', default=1e-4, type=float, help='Learning rate')
parser.add_argument('--weight_decay', default=1e-5, help='Weight Decay')
## dataset
parser.add_argument('--dataset_list', nargs='+', default=['PAOT_123457891213', 'PAOT_10_inner']) # 'PAOT', 'felix'
### please check this argment carefully
### PAOT: include PAOT_123457891213 and PAOT_10
### PAOT_123457891213: include 1 2 3 4 5 7 8 9 12 13
### PAOT_10_inner: same with NVIDIA for comparison
### PAOT_10: original division
### for cross_validation 'cross_validation/PAOT_0' 1 2 3 4
parser.add_argument('--data_root_path', default='', help='data root path')
parser.add_argument('--data_txt_path', default='./dataset/dataset_list/', help='data txt path')
parser.add_argument('--train_data_txt_path', type=str, help='train data txt path.')
parser.add_argument('--val_data_txt_path', type=str, help='val data txt path.')
parser.add_argument('--test_data_txt_path', type=str, help='test data txt path.')
parser.add_argument('--continue_data_txt_path', type=str, help='continue data txt path.')
parser.add_argument('--batch_size', default=1, type=int, help='batch size')
parser.add_argument('--num_workers', default=8, type=int, help='workers numebr for DataLoader')
parser.add_argument('--a_min', default=-175, type=float, help='a_min in ScaleIntensityRanged')
parser.add_argument('--a_max', default=250, type=float, help='a_max in ScaleIntensityRanged')
parser.add_argument('--b_min', default=0.0, type=float, help='b_min in ScaleIntensityRanged')
parser.add_argument('--b_max', default=1.0, type=float, help='b_max in ScaleIntensityRanged')
parser.add_argument('--space_x', default=1.5, type=float, help='spacing in x direction')
parser.add_argument('--space_y', default=1.5, type=float, help='spacing in y direction')
parser.add_argument('--space_z', default=1.5, type=float, help='spacing in z direction')
parser.add_argument('--roi_x', default=96, type=int, help='roi size in x direction')
parser.add_argument('--roi_y', default=96, type=int, help='roi size in y direction')
parser.add_argument('--roi_z', default=96, type=int, help='roi size in z direction')
parser.add_argument('--num_samples', default=2, type=int, help='sample number in each ct')
parser.add_argument('--phase', default='train', help='train or validation or test')
parser.add_argument('--uniform_sample', action="store_true", default=False, help='whether utilize uniform sample strategy')
parser.add_argument('--datasetkey', nargs='+', default=['01', '02', '03', '04', '05',
'07', '08', '09', '12', '13', '10_03',
'10_06', '10_07', '10_08', '10_09', '10_10'],
help='the content for ')
parser.add_argument('--cache_dataset', action="store_true", default=False, help='whether use cache dataset')
parser.add_argument('--cache_rate', default=0.005, type=float, help='The percentage of cached data in total')
parser.add_argument('--organ_list', nargs='+', type=int, required=True, help='Target training organ ids.')
parser.add_argument('--old_organ_list', nargs='+', type=int, required=True)
args = parser.parse_args()
process(args=args)
if __name__ == "__main__":
main()