-
Notifications
You must be signed in to change notification settings - Fork 635
/
Copy pathEvolution Strategy Basic.py
76 lines (57 loc) · 2.62 KB
/
Evolution Strategy Basic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
"""
The Evolution Strategy can be summarized as the following term:
{mu/rho +, lambda}-ES
Here we use following term to find a maximum point.
{n_pop/n_pop + n_kid}-ES
Visit my tutorial website for more: https://mofanpy.com/tutorials/
"""
import numpy as np
import matplotlib.pyplot as plt
DNA_SIZE = 1 # DNA (real number)
DNA_BOUND = [0, 5] # solution upper and lower bounds
N_GENERATIONS = 200
POP_SIZE = 100 # population size
N_KID = 50 # n kids per generation
def F(x): return np.sin(10*x)*x + np.cos(2*x)*x # to find the maximum of this function
# find non-zero fitness for selection
def get_fitness(pred): return pred.flatten()
def make_kid(pop, n_kid):
# generate empty kid holder
kids = {'DNA': np.empty((n_kid, DNA_SIZE))}
kids['mut_strength'] = np.empty_like(kids['DNA'])
for kv, ks in zip(kids['DNA'], kids['mut_strength']):
# crossover (roughly half p1 and half p2)
p1, p2 = np.random.choice(np.arange(POP_SIZE), size=2, replace=False)
cp = np.random.randint(0, 2, DNA_SIZE, dtype=np.bool) # crossover points
kv[cp] = pop['DNA'][p1, cp]
kv[~cp] = pop['DNA'][p2, ~cp]
ks[cp] = pop['mut_strength'][p1, cp]
ks[~cp] = pop['mut_strength'][p2, ~cp]
# mutate (change DNA based on normal distribution)
ks[:] = np.maximum(ks + (np.random.rand(*ks.shape)-0.5), 0.) # must > 0
kv += ks * np.random.randn(*kv.shape)
kv[:] = np.clip(kv, *DNA_BOUND) # clip the mutated value
return kids
def kill_bad(pop, kids):
# put pop and kids together
for key in ['DNA', 'mut_strength']:
pop[key] = np.vstack((pop[key], kids[key]))
fitness = get_fitness(F(pop['DNA'])) # calculate global fitness
idx = np.arange(pop['DNA'].shape[0])
good_idx = idx[fitness.argsort()][-POP_SIZE:] # selected by fitness ranking (not value)
for key in ['DNA', 'mut_strength']:
pop[key] = pop[key][good_idx]
return pop
pop = dict(DNA=5 * np.random.rand(1, DNA_SIZE).repeat(POP_SIZE, axis=0), # initialize the pop DNA values
mut_strength=np.random.rand(POP_SIZE, DNA_SIZE)) # initialize the pop mutation strength values
plt.ion() # something about plotting
x = np.linspace(*DNA_BOUND, 200)
plt.plot(x, F(x))
for _ in range(N_GENERATIONS):
# something about plotting
if 'sca' in globals(): sca.remove()
sca = plt.scatter(pop['DNA'], F(pop['DNA']), s=200, lw=0, c='red', alpha=0.5); plt.pause(0.05)
# ES part
kids = make_kid(pop, N_KID)
pop = kill_bad(pop, kids) # keep some good parent for elitism
plt.ioff(); plt.show()