-
Notifications
You must be signed in to change notification settings - Fork 1
/
pipeline.py
388 lines (313 loc) · 19.6 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import numpy as np
import tensorflow as tf
import pdb
import scipy.misc as sci
import os
from model import Generator, Discriminator
from ast import literal_eval
from utils import stackLabels, stackLabelsOnly, normalize, denormalize
import random
import scipy.misc
import re
def ClipIfNotNone(grad):
if grad is None:
return grad
return tf.clip_by_value(grad, -1, 1)
class Pipeline():
def __init__(self):
self.DBpath = 'D:/processed/'
self.graphPath = ''
self.modelPath = 'D:/GANSProject/model/'
self.imgDim = 128
self.batchSize = 4
self.numClass = 5
self.lambdaCls = 1
self.lambdaRec = 10
self.lambdaGp = 10
self.g_skip_step = 5
self.epochs = 10
self.epochsDecay = 10
self.logstep = 10
self.epochsSave = 2
self.learningRateD = 0.00001
self.learningRateG = 0.00001
self.lrDecaysD = np.linspace(self.learningRateD,0,self.epochs-self.epochsDecay+2)
self.lrDecaysD = self.lrDecaysD[1:]
self.lrDecaysG = np.linspace(self.learningRateG,0,self.epochs-self.epochsDecay+2)
self.lrDecaysG = self.lrDecaysG[1:]
self.clipD = 0.005
self.sample_step = 50
self.save_step = 5000
def init_model(self):
#if not os.path.exists(self.modelPath) or os.listdir(self.modelPath) == []:
# Create the whole training graph
self.realX = tf.placeholder(tf.float32, [None, self.imgDim, self.imgDim, 3], name="realX")
self.realLabels = tf.placeholder(tf.float32, [None, self.numClass], name="realLabels")
self.realLabelsOneHot = tf.placeholder(tf.float32, [None, self.imgDim, self.imgDim, self.numClass], name="realLabelsOneHot")
self.fakeLabels = tf.placeholder(tf.float32, [None, self.numClass], name="fakeLabels")
self.fakeLabelsOneHot = tf.placeholder(tf.float32, [None, self.imgDim, self.imgDim, self.numClass], name="fakeLabelsOneHot")
self.alphagp = tf.placeholder(tf.float32, [], name="alphagp")
# Initialize the generator and discriminator
self.Gen = Generator()
self.Dis = Discriminator()
# -----------------------------------------------------------------------------------------
# -----------------------------------Create D training pipeline----------------------------
# -----------------------------------------------------------------------------------------
# Create fake image
self.fakeX = self.Gen.recForward(self.realX, self.fakeLabelsOneHot)
YSrc_real, YCls_real = self.Dis.forward(self.realX)
YSrc_fake, YCls_fake = self.Dis.forward(self.fakeX)
YCls_real = tf.squeeze(YCls_real) # remove void dimensions
self.d_loss_real = - tf.reduce_mean(YSrc_real)
self.d_loss_fake = tf.reduce_mean(YSrc_fake)
self.d_loss_cls = tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(labels=self.realLabels,logits=YCls_real, name="d_loss_cls")) / self.batchSize
#TOTAL LOSS
self.d_loss = self.d_loss_real + self.d_loss_fake + self.lambdaCls * self.d_loss_cls #+ self.d_loss_gp
vars = tf.trainable_variables()
self.d_params = [v for v in vars if v.name.startswith('Discriminator/')]
train_D = tf.train.AdamOptimizer(learning_rate=self.learningRateD, beta1=0.5, beta2=0.999)
self.train_D_loss = train_D.minimize(self.d_loss, var_list=self.d_params)
# gvs = self.train_D.compute_gradients(self.d_loss, var_list=self.d_params)
# capped_gvs = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gvs]
# self.train_D_loss = self.train_D.apply_gradients(capped_gvs)
#-------------GRADIENT PENALTY---------------------------
interpolates = self.alphagp * self.realX + (1 - self.alphagp) * self.fakeX
out,_ = self.Dis.forward(interpolates)
gradients = tf.gradients(out, [interpolates])[0]
slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), axis=[1,2,3]))
_gradient_penalty = tf.reduce_mean(tf.square(slopes - 1.0))
self.d_loss_gp = self.lambdaGp * _gradient_penalty
self.train_D_gp = train_D.minimize(self.d_loss_gp, var_list=self.d_params)
# gvs = self.train_D.compute_gradients(self.d_loss_gp)
# capped_gvs = [(ClipIfNotNone(grad), var) for grad, var in gvs]
# self.train_D_gp = self.train_D.apply_gradients(capped_gvs)
#-------------------------------------------------------------------------------
#-----------------accuracy--------------------------------------------------------------
YCls_real_sigmoid = tf.sigmoid(YCls_real)
predicted = tf.to_int32(YCls_real_sigmoid > 0.5)
labels = tf.to_int32(self.realLabels)
correct = tf.to_float(tf.equal(predicted, labels))
hundred = tf.constant(100.0)
self.accuracy = tf.reduce_mean(tf.cast(correct, tf.float32), axis=0) * hundred
#--------------------------------------------------------------------------------------
#CLIP D WEIGHTS
#self.clip_D = [p.assign(tf.clip_by_value(p, -self.clipD, self.clipD)) for p in self.d_params]
# -----------------------------------------------------------------------------------------
# ----------------------------Create G training pipeline-----------------------------------
# -----------------------------------------------------------------------------------------
#original to target and target to original domain
#self.fakeX = self.Gen.recForward(self.realX, self.fakeLabelsOneHot)
rec_x = self.Gen.recForward(self.fakeX,self.realLabelsOneHot)
# compute losses
#out_src, out_cls = self.Dis.forward(self.fakeX)
self.g_loss_adv = - tf.reduce_mean(YSrc_fake)
self.g_loss_cls = tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(labels=self.fakeLabels,logits=tf.squeeze(YCls_fake))) / self.batchSize
self.g_loss_rec = tf.reduce_mean(tf.abs(self.realX - rec_x))
# total G loss and optimize
self.g_loss = self.g_loss_adv + self.lambdaCls * self.g_loss_cls + self.lambdaRec * self.g_loss_rec
train_G = tf.train.AdamOptimizer(learning_rate=self.learningRateG, beta1=0.5, beta2=0.999)
self.g_params = [v for v in vars if v.name.startswith('Generator/')]
self.train_G_loss = train_G.minimize(self.g_loss, var_list=self.g_params)
# gvs = self.train_G.compute_gradients(self.g_loss)
# capped_gvs = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gvs]
# self.train_G_loss = self.train_G.apply_gradients(capped_gvs)
#TF session
self.saver = tf.train.Saver()
self.init = tf.global_variables_initializer()
self.sess = tf.Session()
self.sess.run(self.init)
#restore model if it exists
if os.listdir(self.modelPath) == []:
self.init = tf.global_variables_initializer()
self.sess = tf.Session()
self.sess.run(self.init)
self.epoch_index = 1
self.picture = 0
else:
self.sess = tf.Session()
#self.saver = tf.train.import_meta_graph(os.path.join(self.modelPath, "model49999_1.meta"))
checkpoint = tf.train.latest_checkpoint(self.modelPath)
self.saver.restore(self.sess, checkpoint)
#-------------------------------------------------------------------------------------------
model_info = checkpoint.split("model/model",1)[1].split("_",1)
self.picture = int(model_info[0])
self.epoch_index = int(model_info[1])
#writer = tf.summary.FileWriter(self.graphPath, graph=tf.get_default_graph())
def train(self):
# -----------------------------------------------------------------------------------------
# -----------------------------------START TRAINING----------------------------------------
# -----------------------------------------------------------------------------------------
images = []
trueLabels = []
gloss = 0
g_loss_cls = 0
g_loss_rec = 0
d_loss_real = 0
# test image
img_test = normalize(sci.imread(os.path.join(self.DBpath, "002000_[1, 0, 0, 1, 0].jpg")))
#002000_[1, 0, 0, 1, 0]
labels = np.array([0, 1, 0, 1, 0])
img_test = np.stack([img_test])
#----------------------------------------------
# -----------------------------------------------------------------------------------------
# -----------------------------------BEGIN TRAINING----------------------------------------
# -----------------------------------------------------------------------------------------
##DB
filenames = os.listdir(self.DBpath)
for e in range(self.epoch_index,self.epochs):
train_subset = filenames[self.batchSize*self.picture:]
for i, filename in enumerate(train_subset):
img = sci.imread(os.path.join(self.DBpath, filename))
splits = filename.split('_')
trueLabels.append(literal_eval(splits[1].split('.')[0]))
# Normalization and random flip (data augmentation)
img = normalize(img)
if random.random() > 0.5:
img = np.fliplr(img)
images.append(img)
#print(filename, np.mean(img))
if len(images) % self.batchSize == 0:
# Create fake labels and associated images
randomLabels = np.random.randint(2, size=(self.batchSize, self.numClass))
# realX_fakeLabels has to contain the original image with the labels to generate concatenated
imagesWithFakeLabels = stackLabels(images, randomLabels)
epsilon = np.random.rand()
# -----------------------------------------------------------------------------------------
# -----------------------------------TRAIN DISCRIMINATOR-----------------------------------
# -----------------------------------------------------------------------------------------
#print("training discriminator...")
alpha = np.random.uniform(low=0, high=1.0)
_ = self.sess.run([self.train_D_loss],
feed_dict={
self.realLabels: trueLabels,
self.realLabelsOneHot: stackLabelsOnly(trueLabels),
self.fakeLabels: randomLabels,
self.fakeLabelsOneHot: stackLabelsOnly(randomLabels),
self.realX: np.stack(images),
self.alphagp: alpha,
})
#GRADIENT PENALTY
_ = self.sess.run([self.train_D_gp],
feed_dict={
self.realLabels: trueLabels,
self.realLabelsOneHot: stackLabelsOnly(trueLabels),
self.fakeLabels: randomLabels,
self.fakeLabelsOneHot: stackLabelsOnly(randomLabels),
self.realX: np.stack(images),
self.alphagp: alpha,
})
#CLIPPING
# _ = self.sess.run([self.clip_D])
if (self.picture+1) % self.g_skip_step == 0:
#if np.abs(d_loss_real) > np.abs(g_loss_adv):
# -----------------------------------------------------------------------------------------
# -----------------------------------TRAIN GENERATOR---------------------------------------
# -----------------------------------------------------------------------------------------
#print("training generator...")
_, = self.sess.run([self.train_G_loss],
feed_dict={
self.realLabelsOneHot: stackLabelsOnly(trueLabels),
self.realX: np.stack(images),
self.fakeLabels: randomLabels,
self.fakeLabelsOneHot: stackLabelsOnly(randomLabels)})
# -----------------------------------------------------------------------------------------
# -----------------------------------PRINTING LOSSES---------------------------------------
# -----------------------------------------------------------------------------------------
#if (self.picture + 1) % self.logstep == 0:
print("printing losses...")
dloss, d_loss_real, d_loss_fake, d_loss_gp, d_loss_cls, accuracy, gloss, g_loss_adv, g_loss_cls, g_loss_rec = self.sess.run(
[
self.d_loss,
self.d_loss_real,
self.d_loss_fake,
self.d_loss_gp,
self.d_loss_cls,
self.accuracy,
self.g_loss,
self.g_loss_adv,
self.g_loss_cls,
self.g_loss_rec,
],
feed_dict={
self.realLabels: trueLabels,
self.realLabelsOneHot: stackLabelsOnly(trueLabels),
self.realX: np.stack(images),
self.fakeLabels: randomLabels,
self.fakeLabelsOneHot: stackLabelsOnly(randomLabels),
self.alphagp: alpha
})
#print("Loss = " , dloss + gloss, " ", "Dloss = " , dloss, " ", "Gloss = ", gloss, "Epoch =", e)
#print("Dloss = " , dloss, " d_loss_real: ", d_loss_real, " d_loss_fake: ", d_loss_fake, " gradient penalty: ", _gradient_penalty, " d_loss_cls: ", d_loss_cls)
#print("YCls_real: ")
#print(YCls_real)
#print([np.mean(i) for i in gradLoss])
print("---------------------------")
print(self.batchSize, " Batch: ", self.picture, "Accuracy: ",accuracy, "Dloss = " , dloss, " d_loss_real: ", d_loss_real, " d_loss_fake: ", d_loss_fake, " d_loss_gp: ", d_loss_gp, " d_loss_cls: ", d_loss_cls)
print(self.batchSize, " Batch: ", self.picture, "Accuracy: ",accuracy, "Gloss = ", gloss, "g_loss_Adv: ", g_loss_adv, "g_loss_cls: ", g_loss_cls*self.lambdaCls, "g_loss_rec: ", g_loss_rec*self.lambdaRec, "epoch: ", e)
#print("Picture: ", i, "Accuracy: ",accuracy, "Loss = " , dloss + gloss, " ", "Dloss = " , dloss, " ", "Gloss = ", gloss, "Epoch =", e)
print("---------------------------")
# RESET
images = []
trueLabels = []
self.picture+=1
#save images
if (self.picture+1) % self.sample_step == 0:
generatedImage = np.squeeze(self.sess.run([self.fakeX], feed_dict={self.realX: img_test,self.fakeLabelsOneHot: stackLabelsOnly([labels])}), axis=0)
sci.imsave('D:/GANSProject/samples/outfile' + str(self.picture) + "_" + str(e) + '.jpg', denormalize(generatedImage))
# Save model every 5k batches
if (self.picture + 1) % self.save_step == 0:
if not os.path.exists(self.modelPath):
os.makedirs(self.modelPath)
save_path = self.saver.save(self.sess, os.path.join(self.modelPath, "model" + str(self.picture) + "_" + str(e)))
print("Model saved in file: %s" % save_path)
#set images index to 0 to start iterating the DB again
self.picture = 0
def test(self, labels=None, img=None):
if not os.path.exists(self.modelPath):
print("The model does not exit")
return
with tf.Session() as sess:
# Restore model weights from previously saved model
folder = os.path.dirname(os.path.normpath(self.modelPath))
saver = tf.train.import_meta_graph(os.path.join(folder,'model.ckpt.meta'))
saver.restore(sess, tf.train.latest_checkpoint(folder))
if img is None:
img = sci.imread(os.path.join(self.DBpath, "000001_[0, 0, 1, 0, 1].jpg"))
if labels is None:
labels = np.random.randint(2, size=(1, 5))
# Get tensors
recov_fakeX = sess.graph.get_tensor_by_name("fakeX:0")
recov_realX = sess.graph.get_tensor_by_name("realX:0")
recov_fakeLabelsOneHot = sess.graph.get_tensor_by_name("fakeLabelsOneHot:0")
img = np.reshape(img, (1, 128, 128, 3))
generatedImage = np.squeeze(sess.run([recov_fakeX], feed_dict={recov_realX: np.stack(img),
recov_fakeLabelsOneHot: stackLabelsOnly(
labels)}), axis=0)
# sci.imsave('img.jpg', img)
# img = normalize(img)
# sci.imsave('out.jpg', denormalize(img))
sci.imsave('outfile1.jpg', denormalize(generatedImage))
def random_samples(self):
filenames = os.listdir(self.DBpath)
random_pics_idx = np.random.randint(low=0, high=len(filenames), size=10)
rows = []
for e in random_pics_idx:
img = np.stack([normalize(sci.imread(os.path.join(self.DBpath, filenames[e])))])
splits = filenames[e].split('_')
labels = literal_eval(splits[1].split('.')[0])
row_images = []
row_images.append(denormalize(np.squeeze(img)))
for j in range(0,len(labels)):
fakeLabels = np.copy(labels)
if j < 3: # hair label
if fakeLabels[j] == 0:
fakeLabels[0:3] = [0]*3
fakeLabels[j] = 1
else:
fakeLabels[j] = 0 if fakeLabels[j]==1 else 1
generatedImage = np.squeeze(self.sess.run([self.fakeX], feed_dict={self.realX: img,self.fakeLabelsOneHot: stackLabelsOnly([fakeLabels])}), axis=0)
row_images.append(denormalize(generatedImage))
row = np.concatenate(row_images, axis=1)
rows.append(row)
samples = np.concatenate(rows, axis=0)
sci.imsave('D:/GANSProject/samples/random_samples.jpg', samples)