forked from ndrplz/self-driving-car
-
Notifications
You must be signed in to change notification settings - Fork 0
/
project_5_utils.py
317 lines (262 loc) · 10.5 KB
/
project_5_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import os
import sys
from os.path import exists
from os.path import join
import cv2
import numpy as np
def get_file_list_recursively(top_directory):
"""
Get list of full paths of all files found under root directory "top_directory".
If a list of allowed file extensions is provided, files are filtered according to this list.
Parameters
----------
top_directory: str
Root of the hierarchy
Returns
-------
file_list: list
List of files found under top_directory (with full path)
"""
if not exists(top_directory):
raise ValueError('Directory "{}" does NOT exist.'.format(top_directory))
file_list = []
for cur_dir, cur_subdirs, cur_files in os.walk(top_directory):
for file in cur_files:
file_list.append(join(cur_dir, file))
sys.stdout.write(
'\r[{}] - found {:06d} files...'.format(top_directory, len(file_list)))
sys.stdout.flush()
sys.stdout.write(' Done.\n')
return file_list
def stitch_together(input_images, layout, resize_dim=None, off_x=None, off_y=None,
bg_color=(0, 0, 0)):
"""
Stitch together N input images into a bigger frame, using a grid layout.
Input images can be either color or grayscale, but must all have the same size.
Parameters
----------
input_images : list
List of input images
layout : tuple
Grid layout of the stitch expressed as (rows, cols)
resize_dim : couple
If not None, stitch is resized to this size
off_x : int
Offset between stitched images along x axis
off_y : int
Offset between stitched images along y axis
bg_color : tuple
Color used for background
Returns
-------
stitch : ndarray
Stitch of input images
"""
if len(set([img.shape for img in input_images])) > 1:
raise ValueError('All images must have the same shape')
if len(set([img.dtype for img in input_images])) > 1:
raise ValueError('All images must have the same data type')
# determine if input images are color (3 channels) or grayscale (single channel)
if len(input_images[0].shape) == 2:
mode = 'grayscale'
img_h, img_w = input_images[0].shape
elif len(input_images[0].shape) == 3:
mode = 'color'
img_h, img_w, img_c = input_images[0].shape
else:
raise ValueError('Unknown shape for input images')
# if no offset is provided, set to 10% of image size
if off_x is None:
off_x = img_w // 10
if off_y is None:
off_y = img_h // 10
# create stitch mask
rows, cols = layout
stitch_h = rows * img_h + (rows + 1) * off_y
stitch_w = cols * img_w + (cols + 1) * off_x
if mode == 'color':
bg_color = np.array(bg_color)[None, None, :] # cast to ndarray add singleton dimensions
stitch = np.uint8(np.repeat(np.repeat(bg_color, stitch_h, axis=0), stitch_w, axis=1))
elif mode == 'grayscale':
stitch = np.zeros(shape=(stitch_h, stitch_w), dtype=np.uint8)
for r in range(0, rows):
for c in range(0, cols):
list_idx = r * cols + c
if list_idx < len(input_images):
if mode == 'color':
stitch[r * (off_y + img_h) + off_y: r * (off_y + img_h) + off_y + img_h,
c * (off_x + img_w) + off_x: c * (off_x + img_w) + off_x + img_w,
:] = input_images[list_idx]
elif mode == 'grayscale':
stitch[r * (off_y + img_h) + off_y: r * (off_y + img_h) + off_y + img_h,
c * (off_x + img_w) + off_x: c * (off_x + img_w) + off_x + img_w] \
= input_images[list_idx]
if resize_dim:
stitch = cv2.resize(stitch, dsize=(resize_dim[::-1]))
return stitch
class Rectangle:
"""
2D Rectangle defined by top-left and bottom-right corners.
Parameters
----------
x_min : int
x coordinate of top-left corner.
y_min : int
y coordinate of top-left corner.
x_max : int
x coordinate of bottom-right corner.
y_min : int
y coordinate of bottom-right corner.
"""
def __init__(self, x_min, y_min, x_max, y_max, label=""):
self.x_min = x_min
self.y_min = y_min
self.x_max = x_max
self.y_max = y_max
self.x_side = self.x_max - self.x_min
self.y_side = self.y_max - self.y_min
self.label = label
def intersect_with(self, rect):
"""
Compute the intersection between this instance and another Rectangle.
Parameters
----------
rect : Rectangle
The instance of the second Rectangle.
Returns
-------
intersection_area : float
Area of intersection between the two rectangles expressed in number of pixels.
"""
if not isinstance(rect, Rectangle):
raise ValueError('Cannot compute intersection if "rect" is not a Rectangle')
dx = min(self.x_max, rect.x_max) - max(self.x_min, rect.x_min)
dy = min(self.y_max, rect.y_max) - max(self.y_min, rect.y_min)
if dx >= 0 and dy >= 0:
intersection = dx * dy
else:
intersection = 0.
return intersection
def resize_sides(self, ratio, bounds=None):
"""
Resize the sides of rectangle while mantaining the aspect ratio and center position.
Parameters
----------
ratio : float
Ratio of the resize in range (0, infinity), where 2 means double the size and 0.5 is half of the size.
bounds: tuple, optional
If present, clip the Rectangle to these bounds=(xbmin, ybmin, xbmax, ybmax).
Returns
-------
rectangle : Rectangle
Reshaped Rectangle.
"""
# compute offset
off_x = abs(ratio * self.x_side - self.x_side) / 2
off_y = abs(ratio * self.y_side - self.y_side) / 2
# offset changes sign according if the resize is either positive or negative
sign = np.sign(ratio - 1.)
off_x = np.int32(off_x * sign)
off_y = np.int32(off_y * sign)
# update top-left and bottom-right coords
new_x_min, new_y_min = self.x_min - off_x, self.y_min - off_y
new_x_max, new_y_max = self.x_max + off_x, self.y_max + off_y
# eventually clip the coordinates according to the given bounds
if bounds:
b_x_min, b_y_min, b_x_max, b_y_max = bounds
new_x_min = max(new_x_min, b_x_min)
new_y_min = max(new_y_min, b_y_min)
new_x_max = min(new_x_max, b_x_max)
new_y_max = min(new_y_max, b_y_max)
return Rectangle(new_x_min, new_y_min, new_x_max, new_y_max)
def draw(self, frame, color=255, thickness=2, draw_label=False):
"""
Draw Rectangle on a given frame.
Notice: while this function does not return anything, original image `frame` is modified.
Parameters
----------
frame : 2D / 3D np.array
The image on which the rectangle is drawn.
color : tuple, optional
Color used to draw the rectangle (default = 255)
thickness : int, optional
Line thickness used t draw the rectangle (default = 1)
draw_label : bool, optional
If True and the Rectangle has a label, draws it on the top of the rectangle.
Returns
-------
None
"""
if draw_label and self.label:
# compute text size
text_font, text_scale, text_thick = cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1
(text_w, text_h), baseline = cv2.getTextSize(self.label, text_font, text_scale,
text_thick)
# draw rectangle on which text will be displayed
text_rect_w = min(text_w, self.x_side - 2 * baseline)
out = cv2.rectangle(frame.copy(), pt1=(self.x_min, self.y_min - text_h - 2 * baseline),
pt2=(self.x_min + text_rect_w + 2 * baseline, self.y_min),
color=color, thickness=cv2.FILLED)
cv2.addWeighted(frame, 0.75, out, 0.25, 0, dst=frame)
# actually write text label
cv2.putText(frame, self.label, (self.x_min + baseline, self.y_min - baseline),
text_font, text_scale, (0, 0, 0), text_thick, cv2.LINE_AA)
# add text rectangle border
cv2.rectangle(frame, pt1=(self.x_min, self.y_min - text_h - 2 * baseline),
pt2=(self.x_min + text_rect_w + 2 * baseline, self.y_min), color=color,
thickness=thickness)
# draw the Rectangle
cv2.rectangle(frame, (self.x_min, self.y_min), (self.x_max, self.y_max), color, thickness)
def get_binary_mask(self, mask_shape):
"""
Get uint8 binary mask of shape `mask_shape` with rectangle in foreground.
Parameters
----------
mask_shape : (tuple)
Shape of the mask to return - following convention (h, w)
Returns
-------
mask : np.array
Binary uint8 mask of shape `mask_shape` with rectangle drawn as foreground.
"""
if mask_shape[0] < self.y_max or mask_shape[1] < self.x_max:
raise ValueError('Mask shape is smaller than Rectangle size')
mask = np.zeros(shape=mask_shape, dtype=np.uint8)
mask = cv2.rectangle(mask, self.tl_corner, self.br_corner, color=255, thickness=cv2.FILLED)
return mask
@property
def tl_corner(self):
"""
Coordinates of the top-left corner of rectangle (as int32).
Returns
-------
tl_corner : int32 tuple
"""
return tuple(map(np.int32, (self.x_min, self.y_min)))
@property
def br_corner(self):
"""
Coordinates of the bottom-right corner of rectangle.
Returns
-------
br_corner : int32 tuple
"""
return tuple(map(np.int32, (self.x_max, self.y_max)))
@property
def coords(self):
"""
Coordinates (x_min, y_min, x_max, y_max) which define the Rectangle.
Returns
-------
coordinates : int32 tuple
"""
return tuple(map(np.int32, (self.x_min, self.y_min, self.x_max, self.y_max)))
@property
def area(self):
"""
Get the area of Rectangle
Returns
-------
area : float32
"""
return np.float32(self.x_side * self.y_side)