-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
257 lines (221 loc) · 12.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
__author__ = 'Mohammad'
import os
import numpy as np
import tensorflow as tf
from tensorflow.contrib import learn, rnn
from data_loader import get_related_answers, get_vqa_data, load_image
# Parameters
embedding_dim = 300
word2vec_file = 'data/GoogleNews-vectors-negative300.bin'
learning_rate = 0.001
batch_size = 8
times_pass_train_data = 2
display_step = 50
save_step = 200
n_hidden = 256
pre_output_len = 256
img_features_len = 512
train_sampling_ratio = 0.1
validation_sampling_ratio = 0.1
def load_related_train_data():
related_answers = get_related_answers(True)
question_texts = related_answers.keys()
answers_vocab = list()
ans_question_num = list()
counter = 0
for q in question_texts:
for ans in related_answers[q]:
answers_vocab.append(ans)
ans_question_num.append(counter)
counter += 1
max_question_length = max([len(question.split(" ")) for question in question_texts])
questions_vocab_processor = learn.preprocessing.VocabularyProcessor(max_question_length)
questions_vocab_processor.fit(question_texts)
# questions = np.array(list(questions_vocab_processor.fit_transform(question_texts)))
answers_vocab_processor = learn.preprocessing.VocabularyProcessor(1, min_frequency=20)
answers_vocab_processor.fit(answers_vocab)
print "answers size={}".format(len(answers_vocab_processor.vocabulary_) - 1)
return questions_vocab_processor, answers_vocab_processor, max_question_length
def load_data(questions_vocab_processor, answers_vocab_processor, is_train, sampling_ratio):
vqa_triplets = get_vqa_data(is_train, sampling_ratio)
print "Total is_train={} dataset size={}".format(is_train, len(vqa_triplets))
question_texts = list()
answers_vocab = list()
images = list()
for (q, a, v) in vqa_triplets:
if a in answers_vocab_processor.vocabulary_._mapping:
question_texts.append(q)
answers_vocab.append(a)
images.append(v)
print "Selected is_train={} answers dataset size={}".format(is_train, len(question_texts))
questions = np.array(list(questions_vocab_processor.transform(question_texts)))
answers = np.array(list(answers_vocab_processor.transform(answers_vocab)))
return questions, answers, images
def load_word2vec(questions_vocab_processor):
init_embedding_w = np.random.uniform(-0.25, 0.25, (len(questions_vocab_processor.vocabulary_), embedding_dim))
with open(word2vec_file, "rb") as f:
header = f.readline()
vocab_size, layer1_size = map(int, header.split())
binary_len = np.dtype('float32').itemsize * layer1_size
counter = 0
for line in xrange(vocab_size):
word = []
while True:
ch = f.read(1)
if ch == ' ':
word = ''.join(word)
break
if ch != '\n':
word.append(ch)
idx = questions_vocab_processor.vocabulary_.get(word)
if idx != 0:
init_embedding_w[idx] = np.fromstring(f.read(binary_len), dtype='float32')
else:
f.read(binary_len)
counter += 1
if counter % 100000 == 0:
print counter
print 'loading word2vec file is complete'
return init_embedding_w
def get_batch(step, questions, answers, images_paths, answers_vocab_len):
batch_start = (step * batch_size) % len(questions)
batch_in_questions = questions[batch_start:batch_start + batch_size]
batch_in_images = list()
batch_out = np.zeros((batch_size, answers_vocab_len))
for i in range(batch_start, batch_start + len(batch_in_questions)):
batch_in_images.append(load_image(images_paths[i]))
batch_out[i - batch_start, answers[i] - 1] = 1
tmp = batch_size - len(batch_in_questions)
if tmp > 0:
for i in range(0, tmp):
batch_out[i + len(batch_in_questions), answers[i] - 1] = 1
batch_in_images.append(load_image(images_paths[i]))
batch_in_questions = np.concatenate((batch_in_questions, questions[0:tmp]), axis=0)
return batch_in_questions, np.asarray(batch_in_images), batch_out
def get_batch_for_test(step, questions, answers, images_paths, answers_vocab_len):
batch_start = (step * batch_size) % len(questions)
batch_in_questions = questions[batch_start:batch_start + batch_size]
batch_in_images = list()
batch_out = np.zeros((len(batch_in_questions), answers_vocab_len))
for i in range(batch_start, batch_start + len(batch_in_questions)):
batch_in_images.append(load_image(images_paths[i]))
batch_out[i - batch_start, answers[i] - 1] = 1
return batch_in_questions, np.asarray(batch_in_images), batch_out, len(batch_in_questions)
def run():
questions_vocab_processor, answers_vocab_processor, max_question_length = load_related_train_data()
questions, answers, images_paths = load_data(questions_vocab_processor, answers_vocab_processor, True, train_sampling_ratio)
sess = tf.Session()
res_net_loader = tf.train.import_meta_graph('data/tensorflow-resnet-pretrained-20160509/ResNet-L152.meta')
res_net_loader.restore(sess, 'data/tensorflow-resnet-pretrained-20160509/ResNet-L152.ckpt')
graph = tf.get_default_graph()
images = graph.get_tensor_by_name("images:0")
raw_img_features = graph.get_tensor_by_name("avg_pool:0")
raw_to_img_features_w = tf.Variable(tf.random_normal([raw_img_features.shape.as_list()[1], img_features_len]),
name="raw_to_img_w")
raw_to_img_features_bias = tf.Variable(tf.random_normal([img_features_len]), name="raw_to_img_bias")
img_features = tf.nn.relu(tf.matmul(raw_img_features, raw_to_img_features_w) + raw_to_img_features_bias)
embedding_w = tf.Variable(tf.random_uniform([len(questions_vocab_processor.vocabulary_), embedding_dim], -1.0, 1.0), name="embedding_w")
input_questions = tf.placeholder(tf.int32, [None, questions.shape[1]], name="input_questions")
embedded_chars = tf.nn.embedding_lookup(embedding_w, input_questions)
unstacked_embedded_chars = tf.unstack(embedded_chars, max_question_length, 1)
lstm_cell = rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)
encoded_questions, _ = rnn.static_rnn(lstm_cell, unstacked_embedded_chars, dtype=tf.float32)
q_w = tf.Variable(tf.random_normal([n_hidden, n_hidden]), name="q_w")
q_bias = tf.Variable(tf.random_normal([n_hidden]), name="q_bias")
questions_features = tf.nn.relu(tf.matmul(encoded_questions[-1], q_w) + q_bias)
output_len = len(answers_vocab_processor.vocabulary_) - 1
output_answers = tf.placeholder(tf.float32, [None, output_len], name="output_answers")
# tmp_len = img_features_len * pre_output_len
# q_to_img_w = tf.Variable(tf.random_normal([n_hidden, tmp_len]), name="q_to_img_w")
# q_to_img_bias = tf.Variable(tf.random_normal([tmp_len]), name="q_to_img_bias")
# img_out_w = tf.matmul(questions_features, q_to_img_w) + q_to_img_bias
# img_out_w = tf.reshape(img_out_w, [-1, img_features_len, pre_output_len])
img_out_w = tf.Variable(tf.random_normal([img_features_len, pre_output_len]), name="img_w")
q_out_w = tf.Variable(tf.random_normal([n_hidden, pre_output_len]), name="q_out_w")
out_bias = tf.Variable(tf.random_normal([pre_output_len]), name="out_bias")
pre_output = tf.nn.relu(tf.matmul(img_features, img_out_w) + tf.matmul(questions_features, q_out_w) + out_bias)
pre_output_w = tf.Variable(tf.random_normal([pre_output_len, output_len]), name="pre_out_w")
pre_output_bias = tf.Variable(tf.random_normal([output_len]), name="pre_out_bias")
prediction = tf.matmul(pre_output, pre_output_w) + pre_output_bias
prediction = tf.identity(prediction, name="prediction")
correct_prediction = tf.equal(tf.argmax(output_answers, 1), tf.argmax(prediction, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=prediction, labels=output_answers), name='cost')
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
step = tf.Variable(0, name="step")
with sess.as_default():
sess.run(tf.global_variables_initializer())
init_embedding_w = load_word2vec(questions_vocab_processor)
sess.run(embedding_w.assign(init_embedding_w))
saver = tf.train.Saver()
if os.path.isfile('data/trained_models/vqa_model.meta'):
saver = tf.train.import_meta_graph('data/trained_models/vqa_model.meta')
saver.restore(sess, tf.train.latest_checkpoint('data/trained_models/'))
print "Restored step={}".format(sess.run(step))
while sess.run(step) * batch_size < len(questions) * times_pass_train_data:
pythonic_step = sess.run(step)
batch_in_questions, batch_in_images, batch_out, _ = get_batch_for_test(pythonic_step, questions, answers, images_paths, output_len)
sess.run(optimizer, feed_dict={input_questions: batch_in_questions, images: batch_in_images, output_answers: batch_out})
sess.run(tf.assign_add(step, 1))
if pythonic_step % display_step == 0:
loss, acc = sess.run([cost, accuracy], feed_dict={input_questions: batch_in_questions, images: batch_in_images, output_answers: batch_out})
print("Iter " + str(pythonic_step) + ", Minibatch Loss={:.6f}".format(loss))
print("Accuracy={}".format(acc))
if pythonic_step % save_step == 0:
saver.save(sess, 'data/trained_models/vqa_model')
print("Saving...")
print("Optimization Finished!")
saver.save(sess, 'data/trained_models/vqa_model')
sess.run(tf.assign(step, 0))
total_size = 0
losses = []
accuracies = []
while sess.run(step) * batch_size < len(questions):
pythonic_step = sess.run(step)
batch_in_questions, batch_in_images, batch_out, size = get_batch_for_test(pythonic_step, questions, answers, images_paths, output_len)
loss, acc = sess.run([cost, accuracy], feed_dict={input_questions: batch_in_questions, images: batch_in_images, output_answers: batch_out})
losses.append(loss * size)
accuracies.append(acc * size)
total_size += size
if pythonic_step % display_step == 0:
print("Training samples {} out of {}".format(pythonic_step * batch_size, len(questions)))
print("Till now training loss={:.6f}".format(sum(losses) / total_size))
print("Till now training accuracy={}".format(sum(accuracies) / total_size))
sess.run(tf.assign_add(step, 1))
total_train_loss = sum(losses) / total_size
total_train_accuracy = sum(accuracies) / total_size
if total_size != len(questions):
print("BUG!!!!")
print(total_size)
print(len(questions))
return
questions, answers, images_paths = load_data(questions_vocab_processor, answers_vocab_processor, False, validation_sampling_ratio)
sess.run(tf.assign(step, 0))
total_size = 0
losses = []
accuracies = []
while sess.run(step) * batch_size < len(questions):
pythonic_step = sess.run(step)
batch_in_questions, batch_in_images, batch_out, size = get_batch_for_test(pythonic_step, questions, answers, images_paths, output_len)
loss, acc = sess.run([cost, accuracy], feed_dict={input_questions: batch_in_questions, images: batch_in_images, output_answers: batch_out})
losses.append(loss * size)
accuracies.append(acc * size)
total_size += size
if pythonic_step % display_step == 0:
print("Validation samples {} out of {}".format(pythonic_step * batch_size, len(questions)))
print("Till now validation loss= " + "{:.6f}".format(sum(losses) / total_size))
print("Till now validation accuracy={}".format(sum(accuracies) / total_size))
print("Total Training Loss={:.6f}".format(total_train_loss))
print("Total Training Accuracy={}".format(total_train_accuracy))
sess.run(tf.assign_add(step, 1))
total_validation_loss = sum(losses) / len(questions)
total_validation_accuracy = sum(accuracies) / len(questions)
print("Total Validation Loss= " + "{:.6f}".format(total_validation_loss))
print("Total Validation Accuracy={}".format(total_validation_accuracy))
if total_size != len(questions):
print("BUG!!!!")
print(total_size)
print(len(questions))
return
if __name__ == "__main__":
run()