-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpredict_commongen.py
144 lines (122 loc) · 5.75 KB
/
predict_commongen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from logger import LoggingCallback
import torch
import argparse
import pytorch_lightning as pl
from dataset import NSPDataset
from trainer import *
from tqdm import tqdm
from transformers import (
AdamW,
T5ForConditionalGeneration,
T5Tokenizer,
get_linear_schedule_with_warmup
)
import random
import numpy as np
import glob
import os
import re
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def extractValLoss(checkpoint_path):
"""Eg checkpoint path format: path_to_dir/checkpoint_epoch=4-val_loss=0.450662.ckpt"""
val_loss = float(re.search('val_loss=(.+?).ckpt', checkpoint_path).group(1))
return val_loss
def extractStepOREpochNum(checkpoint_path):
"""Eg checkpoint path format: path_to_dir/checkpoint_epoch=4.ckpt (or)
path_to_dir/checkpoint_epoch=4-step=50.ckpt (or)
"""
if "step" in checkpoint_path:
num = int(re.search('step=(.+?).ckpt', checkpoint_path).group(1))
else:
num = int(re.search('epoch=(.+?).ckpt', checkpoint_path).group(1))
return num
def getBestModelCheckpointPath(checkpoint_dir):
checkpoint_list = glob.glob(os.path.join(checkpoint_dir, "checkpoint_*.ckpt"))
try:
# Get the checkpoint with lowest validation loss
sorted_list = sorted(checkpoint_list, key=lambda x: extractValLoss(x.split("/")[-1]))
except:
# If validation loss is not present, get the checkpoint with highest step number or epoch number.
sorted_list = sorted(checkpoint_list, key=lambda x: extractStepOREpochNum(x.split("/")[-1]), reverse=True)
return sorted_list[0]
def run():
#torch.multiprocessing.freeze_support()
set_seed(42)
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default="datasets/commongen",
help='Path for Data files')
parser.add_argument('--output_dir', type=str, default="outputs/commongen",
help='Path to save the checkpoints')
parser.add_argument('--checkpoint_dir', type=str, default="outputs/commongen_concept_output_epoch10",
help='Checkpoint directory')
parser.add_argument('--tokenizer_name_or_path', type=str, default="t5-base",
help='Tokenizer name or Path')
parser.add_argument('--max_source_length', type=int, default=32,
help='Maximum Source Length')
parser.add_argument('--max_target_length', type=int, default=32,
help='Maximum Target Length')
parser.add_argument('--eval_batch_size', type=int, default=4,
help='Batch size for Evaluation')
parser.add_argument('--num_train_epochs', type=int, default=10,
help='Number of Training epochs')
args = parser.parse_known_args()[0]
print(args)
# Create a folder if output_dir doesn't exists:
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
print("Creating output directory")
best_checkpoint_path = getBestModelCheckpointPath(args.checkpoint_dir)
print("Using checkpoint = ", str(best_checkpoint_path))
t5model = T5FineTuner.load_from_checkpoint(best_checkpoint_path)
tokenizer = T5Tokenizer.from_pretrained(args.tokenizer_name_or_path)
test_examples = [x.rstrip() for x in open(os.path.join(args.data_dir, 'test.source')).readlines()]
test_fout = open(os.path.join(args.output_dir, 'test.txt'),'w')
val_examples = [x.rstrip() for x in open(os.path.join(args.data_dir, 'valid.source')).readlines()]
val_fout = open(os.path.join(args.output_dir, 'val.txt'),'w')
max_length = 24
min_length = 1
def chunks(lst, n):
for i in range(0, len(lst), n):
yield lst[i : i + n]
device = "cuda" if torch.cuda.is_available() else "cpu"
print(device)
t5model.to(device)
for batch in tqdm(list(chunks(test_examples, args.eval_batch_size))):
dct = tokenizer.batch_encode_plus(batch, max_length=args.max_source_length, return_tensors="pt", pad_to_max_length=True, truncation=True)
summaries = t5model.model.generate(
input_ids=dct["input_ids"].to(device),
attention_mask=dct["attention_mask"].to(device),
num_beams=5,
length_penalty=0.6,
max_length=max_length + 2, # +2 from original because we start at step=1 and stop before max_length
min_length=min_length + 1, # +1 from original because we start at step=1
no_repeat_ngram_size=3,
early_stopping=True,
)
dec = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summaries]
for hypothesis in dec:
test_fout.write(hypothesis + "\n")
test_fout.flush()
for batch in tqdm(list(chunks(val_examples, args.eval_batch_size))):
dct = tokenizer.batch_encode_plus(batch, max_length=args.max_source_length, return_tensors="pt", pad_to_max_length=True, truncation=True)
summaries = t5model.model.generate(
input_ids=dct["input_ids"].to(device),
attention_mask=dct["attention_mask"].to(device),
num_beams=5,
length_penalty=0.6,
max_length=max_length + 2, # +2 from original because we start at step=1 and stop before max_length
min_length=min_length + 1, # +1 from original because we start at step=1
no_repeat_ngram_size=3,
early_stopping=True,
)
dec = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summaries]
for hypothesis in dec:
val_fout.write(hypothesis + "\n")
val_fout.flush()
if __name__ == '__main__':
run()