forked from lamtharnhantrakul/audio_kernels
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset_utils.py
465 lines (397 loc) · 14.1 KB
/
dataset_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
"""Utils for dataset creation.
Creative Applications of Deep Learning w/ Tensorflow.
Kadenze, Inc.
Copyright Parag K. Mital, June 2016.
"""
import os
import pickle
import numpy as np
import tensorflow as tf
from . import dft
from .utils import download_and_extract_tar
def create_input_pipeline(files, batch_size, n_epochs, shape, crop_shape=None,
crop_factor=1.0, n_threads=4):
"""Creates a pipefile from a list of image files.
Includes batch generator/central crop/resizing options.
The resulting generator will dequeue the images batch_size at a time until
it throws tf.errors.OutOfRangeError when there are no more images left in
the queue.
Parameters
----------
files : list
List of paths to image files.
batch_size : int
Number of image files to load at a time.
n_epochs : int
Number of epochs to run before raising tf.errors.OutOfRangeError
shape : list
[height, width, channels]
crop_shape : list
[height, width] to crop image to.
crop_factor : float
Percentage of image to take starting from center.
n_threads : int, optional
Number of threads to use for batch shuffling
"""
# We first create a "producer" queue. It creates a production line which
# will queue up the file names and allow another queue to deque the file
# names all using a tf queue runner.
# Put simply, this is the entry point of the computational graph.
# It will generate the list of file names.
# We also specify it's capacity beforehand.
producer = tf.train.string_input_producer(
files, capacity=len(files))
# We need something which can open the files and read its contents.
reader = tf.WholeFileReader()
# We pass the filenames to this object which can read the file's contents.
# This will create another queue running which dequeues the previous queue.
keys, vals = reader.read(producer)
# And then have to decode its contents as we know it is a jpeg image
imgs = tf.image.decode_jpeg(
vals,
channels=3 if len(shape) > 2 and shape[2] == 3 else 0)
# We have to explicitly define the shape of the tensor.
# This is because the decode_jpeg operation is still a node in the graph
# and doesn't yet know the shape of the image. Future operations however
# need explicit knowledge of the image's shape in order to be created.
imgs.set_shape(shape)
# Next we'll centrally crop the image to the size of 100x100.
# This operation required explicit knowledge of the image's shape.
if shape[0] > shape[1]:
rsz_shape = [int(shape[0] / shape[1] * crop_shape[0] / crop_factor),
int(crop_shape[1] / crop_factor)]
else:
rsz_shape = [int(crop_shape[0] / crop_factor),
int(shape[1] / shape[0] * crop_shape[1] / crop_factor)]
rszs = tf.image.resize_images(imgs, rsz_shape)
crops = (tf.image.resize_image_with_crop_or_pad(
rszs, crop_shape[0], crop_shape[1])
if crop_shape is not None
else imgs)
# Now we'll create a batch generator that will also shuffle our examples.
# We tell it how many it should have in its buffer when it randomly
# permutes the order.
min_after_dequeue = len(files) // 10
# The capacity should be larger than min_after_dequeue, and determines how
# many examples are prefetched. TF docs recommend setting this value to:
# min_after_dequeue + (num_threads + a small safety margin) * batch_size
capacity = min_after_dequeue + (n_threads + 1) * batch_size
# Randomize the order and output batches of batch_size.
batch = tf.train.shuffle_batch([crops],
enqueue_many=False,
batch_size=batch_size,
capacity=capacity,
min_after_dequeue=min_after_dequeue,
num_threads=n_threads)
# alternatively, we could use shuffle_batch_join to use multiple reader
# instances, or set shuffle_batch's n_threads to higher than 1.
return batch
def gtzan_music_speech_download(dst='gtzan_music_speech'):
"""Download the GTZAN music and speech dataset.
Parameters
----------
dst : str, optional
Location to put the GTZAN music and speech datset.
"""
path = 'http://opihi.cs.uvic.ca/sound/music_speech.tar.gz'
download_and_extract_tar(path, dst)
def gtzan_music_speech_load(dst='gtzan_music_speech'):
"""Load the GTZAN Music and Speech dataset.
Downloads the dataset if it does not exist into the dst directory.
Parameters
----------
dst : str, optional
Location of GTZAN Music and Speech dataset.
Returns
-------
Xs, ys : np.ndarray, np.ndarray
Array of data, Array of labels
"""
from scipy.io import wavfile
if not os.path.exists(dst):
gtzan_music_speech_download(dst)
music_dir = os.path.join(os.path.join(dst, 'music_speech'), 'music_wav')
music = [os.path.join(music_dir, file_i)
for file_i in os.listdir(music_dir)
if file_i.endswith('.wav')]
speech_dir = os.path.join(os.path.join(dst, 'music_speech'), 'speech_wav')
speech = [os.path.join(speech_dir, file_i)
for file_i in os.listdir(speech_dir)
if file_i.endswith('.wav')]
Xs = []
ys = []
for i in music:
sr, s = wavfile.read(i)
s = s / 16384.0 - 1.0
re, im = dft.dft_np(s)
mag, phs = dft.ztoc(re, im)
Xs.append((mag, phs))
ys.append(0)
for i in speech:
sr, s = wavfile.read(i)
s = s / 16384.0 - 1.0
re, im = dft.dft_np(s)
mag, phs = dft.ztoc(re, im)
Xs.append((mag, phs))
ys.append(1)
Xs = np.array(Xs)
Xs = np.transpose(Xs, [0, 2, 3, 1])
ys = np.array(ys)
return Xs, ys
def cifar10_download(dst='cifar10'):
"""Download the CIFAR10 dataset.
Parameters
----------
dst : str, optional
Directory to download into.
"""
path = 'http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
download_and_extract_tar(path, dst)
def cifar10_load(dst='cifar10'):
"""Load the CIFAR10 dataset.
Downloads the dataset if it does not exist into the dst directory.
Parameters
----------
dst : str, optional
Location of CIFAR10 dataset.
Returns
-------
Xs, ys : np.ndarray, np.ndarray
Array of data, Array of labels
"""
if not os.path.exists(dst):
cifar10_download(dst)
Xs = None
ys = None
for f in range(1, 6):
cf = pickle.load(open(
'%s/cifar-10-batches-py/data_batch_%d' % (dst, f), 'rb'),
encoding='LATIN')
if Xs is not None:
Xs = np.r_[Xs, cf['data']]
ys = np.r_[ys, np.array(cf['labels'])]
else:
Xs = cf['data']
ys = cf['labels']
Xs = np.swapaxes(np.swapaxes(Xs.reshape(-1, 3, 32, 32), 1, 3), 1, 2)
return Xs, ys
def dense_to_one_hot(labels, n_classes=2):
"""Convert class labels from scalars to one-hot vectors.
Parameters
----------
labels : array
Input labels to convert to one-hot representation.
n_classes : int, optional
Number of possible one-hot.
Returns
-------
one_hot : array
One hot representation of input.
"""
return np.eye(n_classes).astype(np.float32)[labels]
class DatasetSplit(object):
"""Utility class for batching data and handling multiple splits.
Attributes
----------
current_batch_idx : int
Description
images : np.ndarray
Xs of the dataset. Not necessarily images.
labels : np.ndarray
ys of the dataset.
n_labels : int
Number of possible labels
num_examples : int
Number of total observations
"""
def __init__(self, images, labels):
"""Initialize a DatasetSplit object.
Parameters
----------
images : np.ndarray
Xs/inputs
labels : np.ndarray
ys/outputs
"""
self.images = np.array(images).astype(np.float32)
if labels is not None:
self.labels = np.array(labels).astype(np.int32)
self.n_labels = len(np.unique(labels))
else:
self.labels = None
self.num_examples = len(self.images)
def next_batch(self, batch_size=100):
"""Batch generator with randomization.
Parameters
----------
batch_size : int, optional
Size of each minibatch.
Returns
-------
Xs, ys : np.ndarray, np.ndarray
Next batch of inputs and labels (if no labels, then None).
"""
# Shuffle each epoch
current_permutation = np.random.permutation(range(len(self.images)))
epoch_images = self.images[current_permutation, ...]
if self.labels is not None:
epoch_labels = self.labels[current_permutation, ...]
# Then iterate over the epoch
self.current_batch_idx = 0
while self.current_batch_idx < len(self.images):
end_idx = min(
self.current_batch_idx + batch_size, len(self.images))
this_batch = {
'images': epoch_images[self.current_batch_idx:end_idx],
'labels': epoch_labels[self.current_batch_idx:end_idx]
if self.labels is not None else None
}
self.current_batch_idx += batch_size
yield this_batch['images'], this_batch['labels']
class Dataset(object):
"""Create a dataset from data and their labels.
Allows easy use of train/valid/test splits; Batch generator.
Attributes
----------
all_idxs : list
All indexes across all splits.
all_inputs : list
All inputs across all splits.
all_labels : list
All labels across all splits.
n_labels : int
Number of labels.
split : list
Percentage split of train, valid, test sets.
test_idxs : list
Indexes of the test split.
train_idxs : list
Indexes of the train split.
valid_idxs : list
Indexes of the valid split.
"""
def __init__(self, Xs, ys=None, split=[1.0, 0.0, 0.0], one_hot=False):
"""Initialize a Dataset object.
Parameters
----------
Xs : np.ndarray
Images/inputs to a network
ys : np.ndarray
Labels/outputs to a network
split : list, optional
Percentage of train, valid, and test sets.
one_hot : bool, optional
Whether or not to use one-hot encoding of labels (ys).
"""
self.all_idxs = []
self.all_labels = []
self.all_inputs = []
self.train_idxs = []
self.valid_idxs = []
self.test_idxs = []
self.n_labels = 0
self.split = split
# Now mix all the labels that are currently stored as blocks
self.all_inputs = Xs
n_idxs = len(self.all_inputs)
idxs = range(n_idxs)
rand_idxs = np.random.permutation(idxs)
self.all_inputs = self.all_inputs[rand_idxs, ...]
if ys is not None:
self.all_labels = ys if not one_hot else dense_to_one_hot(ys)
self.all_labels = self.all_labels[rand_idxs, ...]
else:
self.all_labels = None
# Get splits
self.train_idxs = idxs[:round(split[0] * n_idxs)]
self.valid_idxs = idxs[len(self.train_idxs):
len(self.train_idxs) + round(split[1] * n_idxs)]
self.test_idxs = idxs[
(len(self.valid_idxs) + len(self.train_idxs)):
(len(self.valid_idxs) + len(self.train_idxs)) +
round(split[2] * n_idxs)]
@property
def X(self):
"""Inputs/Xs/Images.
Returns
-------
all_inputs : np.ndarray
Original Inputs/Xs.
"""
return self.all_inputs
@property
def Y(self):
"""Outputs/ys/Labels.
Returns
-------
all_labels : np.ndarray
Original Outputs/ys.
"""
return self.all_labels
@property
def train(self):
"""Train split.
Returns
-------
split : DatasetSplit
Split of the train dataset.
"""
if len(self.train_idxs):
inputs = self.all_inputs[self.train_idxs, ...]
if self.all_labels is not None:
labels = self.all_labels[self.train_idxs, ...]
else:
labels = None
else:
inputs, labels = [], []
return DatasetSplit(inputs, labels)
@property
def valid(self):
"""Validation split.
Returns
-------
split : DatasetSplit
Split of the validation dataset.
"""
if len(self.valid_idxs):
inputs = self.all_inputs[self.valid_idxs, ...]
if self.all_labels is not None:
labels = self.all_labels[self.valid_idxs, ...]
else:
labels = None
else:
inputs, labels = [], []
return DatasetSplit(inputs, labels)
@property
def test(self):
"""Test split.
Returns
-------
split : DatasetSplit
Split of the test dataset.
"""
if len(self.test_idxs):
inputs = self.all_inputs[self.test_idxs, ...]
if self.all_labels is not None:
labels = self.all_labels[self.test_idxs, ...]
else:
labels = None
else:
inputs, labels = [], []
return DatasetSplit(inputs, labels)
def mean(self):
"""Mean of the inputs/Xs.
Returns
-------
mean : np.ndarray
Calculates mean across 0th (batch) dimension.
"""
return np.mean(self.all_inputs, axis=0)
def std(self):
"""Standard deviation of the inputs/Xs.
Returns
-------
std : np.ndarray
Calculates std across 0th (batch) dimension.
"""
return np.std(self.all_inputs, axis=0)