-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTrainingDataCollection.py
205 lines (151 loc) · 8.32 KB
/
TrainingDataCollection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# Importing the Libraries Required
import cv2
import numpy as np
import os
# Creating and Collecting Training Data
mode = 'trainingData'
directory = 'dataSet/' + mode + '/'
minValue = 70
capture = cv2.VideoCapture(0)
interrupt = -1
while True:
_, frame = capture.read()
# Simulating mirror Image
frame = cv2.flip(frame, 1)
# Getting count of existing images
count = {
'zero': len(os.listdir(directory+"/0")),
'a': len(os.listdir(directory+"/A")),
'b': len(os.listdir(directory+"/B")),
'c': len(os.listdir(directory+"/C")),
'd': len(os.listdir(directory+"/D")),
'e': len(os.listdir(directory+"/E")),
'f': len(os.listdir(directory+"/F")),
'g': len(os.listdir(directory+"/G")),
'h': len(os.listdir(directory+"/H")),
'i': len(os.listdir(directory+"/I")),
'j': len(os.listdir(directory+"/J")),
'k': len(os.listdir(directory+"/K")),
'l': len(os.listdir(directory+"/L")),
'm': len(os.listdir(directory+"/M")),
'n': len(os.listdir(directory+"/N")),
'o': len(os.listdir(directory+"/O")),
'p': len(os.listdir(directory+"/P")),
'q': len(os.listdir(directory+"/Q")),
'r': len(os.listdir(directory+"/R")),
's': len(os.listdir(directory+"/S")),
't': len(os.listdir(directory+"/T")),
'u': len(os.listdir(directory+"/U")),
'v': len(os.listdir(directory+"/V")),
'w': len(os.listdir(directory+"/W")),
'x': len(os.listdir(directory+"/X")),
'y': len(os.listdir(directory+"/Y")),
'z': len(os.listdir(directory+"/Z")),
}
# Printing the count of each set on the screen
cv2.putText(frame, "ZERO : " +str(count['zero']), (10, 60), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "a : " +str(count['a']), (10, 70), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "b : " +str(count['b']), (10, 80), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "c : " +str(count['c']), (10, 90), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "d : " +str(count['d']), (10, 100), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "e : " +str(count['e']), (10, 110), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "f : " +str(count['f']), (10, 120), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "g : " +str(count['g']), (10, 130), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "h : " +str(count['h']), (10, 140), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "i : " +str(count['i']), (10, 150), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "k : " +str(count['k']), (10, 160), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "l : " +str(count['l']), (10, 170), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "m : " +str(count['m']), (10, 180), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "n : " +str(count['n']), (10, 190), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "o : " +str(count['o']), (10, 200), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "p : " +str(count['p']), (10, 210), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "q : " +str(count['q']), (10, 220), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "r : " +str(count['r']), (10, 230), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "s : " +str(count['s']), (10, 240), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "t : " +str(count['t']), (10, 250), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "u : " +str(count['u']), (10, 260), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "v : " +str(count['v']), (10, 270), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "w : " +str(count['w']), (10, 280), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "x : " +str(count['x']), (10, 290), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "y : " +str(count['y']), (10, 300), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "z : " +str(count['z']), (10, 310), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
# Coordinates of the ROI
x1 = int(0.5*frame.shape[1])
y1 = 10
x2 = frame.shape[1]-10
y2 = int(0.5*frame.shape[1])
# Drawing the ROI
# The increment/decrement by 1 is to compensate for the bounding box
cv2.rectangle(frame, (x1-1, y1-1), (x2+1, y2+1), (255,0,0) ,1)
# Extracting the ROI
roi = frame[y1:y2, x1:x2]
cv2.imshow("Frame", frame)
# Image Processing
gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5,5), 2)
th3 = cv2.adaptiveThreshold(blur, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2)
ret, test_image = cv2.threshold(th3, minValue, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
# Output Image after the Image Processing that is used for data collection
test_image = cv2.resize(test_image, (300,300))
cv2.imshow("test", test_image)
# Data Collection
interrupt = cv2.waitKey(10)
if interrupt & 0xFF == 27:
# esc key
break
if interrupt & 0xFF == ord('0'):
cv2.imwrite(directory+'0/'+str(count['zero'])+'.jpg', roi)
if interrupt & 0xFF == ord('a'):
cv2.imwrite(directory+'A/'+str(count['a'])+'.jpg', roi)
if interrupt & 0xFF == ord('b'):
cv2.imwrite(directory+'B/'+str(count['b'])+'.jpg', roi)
if interrupt & 0xFF == ord('c'):
cv2.imwrite(directory+'C/'+str(count['c'])+'.jpg', roi)
if interrupt & 0xFF == ord('d'):
cv2.imwrite(directory+'D/'+str(count['d'])+'.jpg', roi)
if interrupt & 0xFF == ord('e'):
cv2.imwrite(directory+'E/'+str(count['e'])+'.jpg', roi)
if interrupt & 0xFF == ord('f'):
cv2.imwrite(directory+'F/'+str(count['f'])+'.jpg', roi)
if interrupt & 0xFF == ord('g'):
cv2.imwrite(directory+'G/'+str(count['g'])+'.jpg', roi)
if interrupt & 0xFF == ord('h'):
cv2.imwrite(directory+'H/'+str(count['h'])+'.jpg', roi)
if interrupt & 0xFF == ord('i'):
cv2.imwrite(directory+'I/'+str(count['i'])+'.jpg', roi)
if interrupt & 0xFF == ord('j'):
cv2.imwrite(directory+'J/'+str(count['j'])+'.jpg', roi)
if interrupt & 0xFF == ord('k'):
cv2.imwrite(directory+'K/'+str(count['k'])+'.jpg', roi)
if interrupt & 0xFF == ord('l'):
cv2.imwrite(directory+'L/'+str(count['l'])+'.jpg', roi)
if interrupt & 0xFF == ord('m'):
cv2.imwrite(directory+'M/'+str(count['m'])+'.jpg', roi)
if interrupt & 0xFF == ord('n'):
cv2.imwrite(directory+'N/'+str(count['n'])+'.jpg', roi)
if interrupt & 0xFF == ord('o'):
cv2.imwrite(directory+'O/'+str(count['o'])+'.jpg', roi)
if interrupt & 0xFF == ord('p'):
cv2.imwrite(directory+'P/'+str(count['p'])+'.jpg', roi)
if interrupt & 0xFF == ord('q'):
cv2.imwrite(directory+'Q/'+str(count['q'])+'.jpg', roi)
if interrupt & 0xFF == ord('r'):
cv2.imwrite(directory+'R/'+str(count['r'])+'.jpg', roi)
if interrupt & 0xFF == ord('s'):
cv2.imwrite(directory+'S/'+str(count['s'])+'.jpg', roi)
if interrupt & 0xFF == ord('t'):
cv2.imwrite(directory+'T/'+str(count['t'])+'.jpg', roi)
if interrupt & 0xFF == ord('u'):
cv2.imwrite(directory+'U/'+str(count['u'])+'.jpg', roi)
if interrupt & 0xFF == ord('v'):
cv2.imwrite(directory+'V/'+str(count['v'])+'.jpg', roi)
if interrupt & 0xFF == ord('w'):
cv2.imwrite(directory+'W/'+str(count['w'])+'.jpg', roi)
if interrupt & 0xFF == ord('x'):
cv2.imwrite(directory+'X/'+str(count['x'])+'.jpg', roi)
if interrupt & 0xFF == ord('y'):
cv2.imwrite(directory+'Y/'+str(count['y'])+'.jpg', roi)
if interrupt & 0xFF == ord('z'):
cv2.imwrite(directory+'Z/'+str(count['z'])+'.jpg', roi)
capture.release()
cv2.destroyAllWindows()