-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
235 lines (196 loc) · 7.33 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
"""Model definition for GPT-2."""
import functools
from typing import Any, Callable, Literal
import jax
import jax.numpy as jnp
from flax import linen as nn
from utils import recover_tree
class SelfAttention(nn.Module):
"""Multi-Headed Causal Self-Attention.
Attributes:
num_heads: Number of attention heads.
proj_kernel_init: Initializer for residual stream projection.
implementation: Attention implementation. `cudnn` will use flash attention only
on supported GPUs. Defaults to `xla`.
kernel_init: Initializer for qkv projection.
bias_init: Initializer for qkv biases.
dtype: DType of the computation (default: float32).
"""
num_heads: int
proj_kernel_init: Callable[..., Any]
implementation: Literal["xla", "cudnn"] = "xla"
kernel_init: Callable[..., Any] = nn.initializers.normal(0.02)
bias_init: Callable[..., Any] = nn.initializers.zeros
dtype: jnp.dtype = jnp.float32
@nn.compact
def __call__(self, x: jnp.ndarray) -> jnp.ndarray:
assert x.ndim == 3, "Input must be of shape [batch, time, features]"
assert x.shape[-1] % self.num_heads == 0, (
f"Embedding dimension {x.shape[-1]} must be divisible by num_heads {self.num_heads}"
)
bs, seqlen, features = x.shape
head_dim = features // self.num_heads
dense = nn.Dense(
features=(3 * features),
kernel_init=self.kernel_init,
bias_init=self.bias_init,
dtype=self.dtype,
name="c_attn")
# Project to q/k/v and multi-heads.
q, k, v = jnp.split(dense(x), 3, axis=-1)
q, k, v = jax.tree.map(
lambda t: t.reshape(bs, -1, self.num_heads, head_dim), (q, k, v))
x = jax.nn.dot_product_attention(
q, k, v, is_causal=True, implementation=self.implementation)
out = nn.DenseGeneral(
features=features,
axis=(-2, -1),
kernel_init=self.proj_kernel_init,
bias_init=self.bias_init,
dtype=self.dtype,
name="c_proj")(x) # yapf: disable
return out
class MlpBlock(nn.Module):
"""MLP block."""
proj_kernel_init: Callable[..., Any] = nn.initializers.Initializer
kernel_init: Callable[..., Any] = nn.initializers.normal(0.02)
bias_init: Callable[..., Any] = nn.initializers.zeros
dtype: jnp.dtype = jnp.float32
@nn.compact
def __call__(self, x: jnp.ndarray) -> jnp.ndarray:
out_dim = x.shape[-1]
dense = functools.partial(
nn.Dense,
bias_init=self.bias_init,
dtype=self.dtype)
x = dense(4 * out_dim, kernel_init=self.kernel_init, name="c_fc")(x)
x = nn.gelu(x)
x = dense(out_dim, kernel_init=self.proj_kernel_init, name="c_proj")(x)
return x
class Block(nn.Module):
"""Transformer block."""
emb_dim: int
num_heads: int
sdpa_implementation: Literal["xla", "cudnn"]
residual_kernel_init: nn.initializers.Initializer
kernel_init: Callable[..., Any] = nn.initializers.normal(stddev=0.02)
bias_init: Callable[..., Any] = nn.initializers.zeros
dtype: jnp.dtype = jnp.float32
@nn.compact
def __call__(self, x: jnp.ndarray) -> jnp.ndarray:
attn = SelfAttention(
self.num_heads,
implementation=self.sdpa_implementation,
kernel_init=self.kernel_init,
proj_kernel_init=self.residual_kernel_init,
bias_init=self.bias_init,
dtype=self.dtype,
name="attn")
mlp = MlpBlock(
kernel_init=self.kernel_init,
proj_kernel_init=self.residual_kernel_init,
bias_init=self.bias_init,
dtype=self.dtype,
name="mlp")
ln_1 = nn.LayerNorm(name="ln_1")
ln_2 = nn.LayerNorm(name="ln_2")
x = x + attn(ln_1(x))
x = x + mlp(ln_2(x))
return x
class Embed(nn.Module):
"""Same as nn.Embed, but without an explicit typecast in __call__.
This slightly improves throughput (2-5%).
Can be removed once this issue is fixed:
https://github.com/google/flax/issues/4100
"""
num_embeddings: int
features: int
dtype: jnp.dtype = jnp.float32
param_dtype: jnp.dtype = jnp.float32
embedding_init: Callable[..., Any] = nn.initializers.normal(stddev=0.02)
def setup(self):
self.embedding = self.param(
"embedding",
self.embedding_init,
(self.num_embeddings, self.features),
self.param_dtype,
)
def __call__(self, idx: jnp.ndarray) -> jnp.ndarray:
"""Pluck embeddings of given `idx`."""
return jnp.take(self.embedding, idx, axis=0)
def attend(self, query: jnp.ndarray) -> jnp.ndarray:
"""Project `query` to entire `num_embeddings` space."""
query, embedding = (query.astype(self.dtype),
self.embedding.astype(self.dtype))
return query @ embedding.T
class GPT(nn.Module):
"""GPT-2 architecture."""
vocab_size: int
block_size: int
emb_dim: int
num_heads: int
num_layers: int
sdpa_implementation: Literal["xla", "cudnn"] = "xla"
embedding_init: Callable[..., Any] = nn.initializers.normal(stddev=0.02)
kernel_init: Callable[..., Any] = nn.initializers.normal(stddev=0.02)
bias_init: Callable[..., Any] = nn.initializers.zeros
dtype: jnp.dtype = jnp.float32
@nn.compact
def __call__(self, x: jnp.ndarray) -> jnp.ndarray:
_, T = x.shape
assert T <= self.block_size, (
f"Input sequence length {T} is greater than block size {self.block_size}"
)
wte = Embed(
self.vocab_size,
features=self.emb_dim,
embedding_init=self.embedding_init,
dtype=self.dtype,
name="wte")
wpe = Embed(
self.block_size,
features=self.emb_dim,
embedding_init=self.embedding_init,
dtype=self.dtype,
name="wpe")
tok_emb = wte(x)
pos_emb = wpe(jnp.arange(T, dtype=jnp.int32))
x = tok_emb + pos_emb
# Apply transformer blocks.
residual_kernel_init = nn.initializers.normal(0.02 / jnp.sqrt(2 * self.num_layers))
for i in range(self.num_layers):
x = Block(
self.emb_dim,
self.num_heads,
sdpa_implementation=self.sdpa_implementation,
kernel_init=self.kernel_init,
residual_kernel_init=residual_kernel_init,
bias_init=self.bias_init,
dtype=self.dtype,
name=str(i))(x) # yapf: disable
# Final layer norm and classification.
x = nn.LayerNorm(name="ln_f")(x)
x = wte.attend(x)
return x
def load_hf_pretrained(variant: str):
"""Load HF-Transformers GPT2 weights."""
assert variant in {"gpt2", "gpt2-medium", "gpt2-large", "gpt2-xl"}
from transformers import GPT2LMHeadModel
print("Loading pretrained weights: %s" % variant)
hf_params = GPT2LMHeadModel.from_pretrained(variant).state_dict()
hf_params = {k: jnp.asarray(v.numpy()) for k, v in hf_params.items()}
# Rename torch params to flax params.
hf_params = {k.replace("transformer.", ""): v for k, v in hf_params.items()}
hf_params = {k.replace("h.", ""): v for k, v in hf_params.items()}
hf_params = {k.replace("wte.weight", "wte.embedding"): v for k, v in hf_params.items()}
hf_params = {k.replace("wpe.weight", "wpe.embedding"): v for k, v in hf_params.items()}
hf_params = {
(k.replace(".weight", ".scale") if "ln" in k else k): v
for k, v in hf_params.items()
}
hf_params = {k.replace(".weight", ".kernel"): v for k, v in hf_params.items()}
hf_params.pop("lm_head.kernel") # Same as wte.embedding
# Convert to Flax nested tree format.
names, values = zip(*hf_params.items())
restored_params = recover_tree(names, values)
return restored_params