diff --git a/Algorithm/Bubble.html b/Algorithm/Bubble.html index 0e4af1f..ecbd8ec 100644 --- a/Algorithm/Bubble.html +++ b/Algorithm/Bubble.html @@ -62,12 +62,12 @@
+ + +Merge Sort is a divide-and-conquer algorithm that splits the array into halves, recursively sorts each half, and then merges the sorted halves to produce the sorted array. It is known for its efficiency in handling large data sets, with a time complexity of O(n log n) in all cases.
+
+ Complexity | +|
---|---|
Best Time Complexity | +O(n log n) | +
Average Time Complexity | +O(n log n) | +
Worst Time Complexity | +O(n log n) | +
Space Complexity | +O(n) | +
public void mergeSort(int[] arr, int left, int right) {
+ if (left < right) {
+ int mid = (left + right) / 2;
+ mergeSort(arr, left, mid);
+ mergeSort(arr, mid + 1, right);
+ merge(arr, left, mid, right);
+ }
+ }
+
+ public void merge(int[] arr, int left, int mid, int right) {
+ int n1 = mid - left + 1;
+ int n2 = right - mid;
+ int[] leftArr = new int[n1];
+ int[] rightArr = new int[n2];
+ System.arraycopy(arr, left, leftArr, 0, n1);
+ System.arraycopy(arr, mid + 1, rightArr, 0, n2);
+ int i = 0, j = 0, k = left;
+ while (i < n1 && j < n2) {
+ if (leftArr[i] <= rightArr[j]) {
+ arr[k++] = leftArr[i++];
+ } else {
+ arr[k++] = rightArr[j++];
+ }
+ }
+ while (i < n1) {
+ arr[k++] = leftArr[i++];
+ }
+ while (j < n2) {
+ arr[k++] = rightArr[j++];
+ }
+ }
+ void mergeSort(int arr[], int left, int right) {
+ if (left < right) {
+ int mid = left + (right - left) / 2;
+ mergeSort(arr, left, mid);
+ mergeSort(arr, mid + 1, right);
+ merge(arr, left, mid, right);
+ }
+ }
+
+ void merge(int arr[], int left, int mid, int right) {
+ int n1 = mid - left + 1;
+ int n2 = right - mid;
+ int L[n1], R[n2];
+ for (int i = 0; i < n1; i++)
+ L[i] = arr[left + i];
+ for (int j = 0; j < n2; j++)
+ R[j] = arr[mid + 1 + j];
+ int i = 0, j = 0, k = left;
+ while (i < n1 && j < n2) {
+ if (L[i] <= R[j]) {
+ arr[k] = L[i];
+ i++;
+ } else {
+ arr[k] = R[j];
+ j++;
+ }
+ k++;
+ }
+ while (i < n1) {
+ arr[k] = L[i];
+ i++;
+ k++;
+ }
+ while (j < n2) {
+ arr[k] = R[j];
+ j++;
+ k++;
+ }
+ }
+ void mergeSort(vector<int>& arr, int left, int right) {
+ if (left < right) {
+ int mid = left + (right - left) / 2;
+ mergeSort(arr, left, mid);
+ mergeSort(arr, mid + 1, right);
+ merge(arr, left, mid, right);
+ }
+ }
+
+ void merge(vector<int>& arr, int left, int mid, int right) {
+ int n1 = mid - left + 1;
+ int n2 = right - mid;
+ vector<int> L(n1), R(n2);
+ for (int i = 0; i < n1; i++)
+ L[i] = arr[left + i];
+ for (int j = 0; j < n2; j++)
+ R[j] = arr[mid + 1 + j];
+ int i = 0, j = 0, k = left;
+ while (i < n1 && j < n2) {
+ if (L[i] <= R[j]) {
+ arr[k] = L[i];
+ i++;
+ } else {
+ arr[k] = R[j];
+ j++;
+ }
+ k++;
+ }
+ while (i < n1) {
+ arr[k] = L[i];
+ i++;
+ k++;
+ }
+ while (j < n2) {
+ arr[k] = R[j];
+ j++;
+ k++;
+ }
+ }
+ def merge_sort(arr):
+ if len(arr) > 1:
+ mid = len(arr) // 2
+ left_half = arr[:mid]
+ right_half = arr[mid:]
+ merge_sort(left_half)
+ merge_sort(right_half)
+ i = j = k = 0
+ while i < len(left_half) and j < len(right_half):
+ if left_half[i] < right_half[j]:
+ arr[k] = left_half[i]
+ i += 1
+ else:
+ arr[k] = right_half[j]
+ j += 1
+ k += 1
+ while i < len(left_half):
+ arr[k] = left_half[i]
+ i += 1
+ k += 1
+ while j < len(right_half):
+ arr[k] = right_half[j]
+ j += 1
+ k += 1
+