forked from PaddlePaddle/FastDeploy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.cc
292 lines (277 loc) · 9.49 KB
/
infer.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif
void CpuInfer(const std::string& model_dir, const std::string& video_file,
int frame_num) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto model = fastdeploy::vision::sr::PPMSVSR(model_file, params_file);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
// note: input/output shape is [b, n, c, h, w] (n = frame_nums; b=1(default))
// b and n is dependent on export model shape
// see
// https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md
cv::VideoCapture capture;
// change your save video path
std::string video_out_name = "output.mp4";
capture.open(video_file);
if (!capture.isOpened()) {
std::cout << "can not open video " << std::endl;
return;
}
// Get Video info :fps, frame count
// it used 4.x version of opencv below
// notice your opencv version and method of api.
int video_fps = static_cast<int>(capture.get(cv::CAP_PROP_FPS));
int video_frame_count =
static_cast<int>(capture.get(cv::CAP_PROP_FRAME_COUNT));
// Set fixed size for output frame, only for msvsr model
int out_width = 1280;
int out_height = 720;
std::cout << "fps: " << video_fps << "\tframe_count: " << video_frame_count
<< std::endl;
// Create VideoWriter for output
cv::VideoWriter video_out;
std::string video_out_path("./");
video_out_path += video_out_name;
int fcc = cv::VideoWriter::fourcc('m', 'p', '4', 'v');
video_out.open(video_out_path, fcc, video_fps,
cv::Size(out_width, out_height), true);
if (!video_out.isOpened()) {
std::cout << "create video writer failed!" << std::endl;
return;
}
// Capture all frames and do inference
cv::Mat frame;
int frame_id = 0;
bool reach_end = false;
while (capture.isOpened()) {
std::vector<cv::Mat> imgs;
for (int i = 0; i < frame_num; i++) {
capture.read(frame);
if (!frame.empty()) {
imgs.push_back(frame);
} else {
reach_end = true;
}
}
if (reach_end) {
break;
}
std::vector<cv::Mat> results;
model.Predict(imgs, results);
for (auto& item : results) {
// cv::imshow("13",item);
// cv::waitKey(30);
video_out.write(item);
std::cout << "Processing frame: " << frame_id << std::endl;
frame_id += 1;
}
}
std::cout << "inference finished, output video saved at " << video_out_path
<< std::endl;
capture.release();
video_out.release();
}
void GpuInfer(const std::string& model_dir, const std::string& video_file,
int frame_num) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto option = fastdeploy::RuntimeOption();
// use paddle-TRT
option.UseCuda();
auto model = fastdeploy::vision::sr::PPMSVSR(model_file, params_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
// note: input/output shape is [b, n, c, h, w] (n = frame_nums; b=1(default))
// b and n is dependent on export model shape
// see
// https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md
cv::VideoCapture capture;
// change your save video path
std::string video_out_name = "output.mp4";
capture.open(video_file);
if (!capture.isOpened()) {
std::cout << "can not open video " << std::endl;
return;
}
// Get Video info :fps, frame count
int video_fps = static_cast<int>(capture.get(cv::CAP_PROP_FPS));
int video_frame_count =
static_cast<int>(capture.get(cv::CAP_PROP_FRAME_COUNT));
// Set fixed size for output frame, only for msvsr model
int out_width = 1280;
int out_height = 720;
std::cout << "fps: " << video_fps << "\tframe_count: " << video_frame_count
<< std::endl;
// Create VideoWriter for output
cv::VideoWriter video_out;
std::string video_out_path("./");
video_out_path += video_out_name;
int fcc = cv::VideoWriter::fourcc('m', 'p', '4', 'v');
video_out.open(video_out_path, fcc, video_fps,
cv::Size(out_width, out_height), true);
if (!video_out.isOpened()) {
std::cout << "create video writer failed!" << std::endl;
return;
}
// Capture all frames and do inference
cv::Mat frame;
int frame_id = 0;
bool reach_end = false;
while (capture.isOpened()) {
std::vector<cv::Mat> imgs;
for (int i = 0; i < frame_num; i++) {
capture.read(frame);
if (!frame.empty()) {
imgs.push_back(frame);
} else {
reach_end = true;
}
}
if (reach_end) {
break;
}
std::vector<cv::Mat> results;
model.Predict(imgs, results);
for (auto& item : results) {
// cv::imshow("13",item);
// cv::waitKey(30);
video_out.write(item);
std::cout << "Processing frame: " << frame_id << std::endl;
frame_id += 1;
}
}
std::cout << "inference finished, output video saved at " << video_out_path
<< std::endl;
capture.release();
video_out.release();
}
void TrtInfer(const std::string& model_dir, const std::string& video_file,
int frame_num) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto option = fastdeploy::RuntimeOption();
option.UseCuda();
option.UseTrtBackend();
option.EnablePaddleTrtCollectShape();
option.SetTrtInputShape("lqs", {1, 2, 3, 180, 320});
option.EnablePaddleToTrt();
auto model = fastdeploy::vision::sr::PPMSVSR(model_file, params_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
// note: input/output shape is [b, n, c, h, w] (n = frame_nums; b=1(default))
// b and n is dependent on export model shape
// see
// https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md
cv::VideoCapture capture;
// change your save video path
std::string video_out_name = "output.mp4";
capture.open(video_file);
if (!capture.isOpened()) {
std::cout << "can not open video " << std::endl;
return;
}
// Get Video info :fps, frame count
int video_fps = static_cast<int>(capture.get(cv::CAP_PROP_FPS));
int video_frame_count =
static_cast<int>(capture.get(cv::CAP_PROP_FRAME_COUNT));
// Set fixed size for output frame, only for msvsr model
// Note that the resolution between the size and the original input is
// consistent when the model is exported,
// for example: [1,2,3,180,320], after 4x super separation [1,2,3,720,1080].
// Therefore, it is very important to derive the model
int out_width = 1280;
int out_height = 720;
std::cout << "fps: " << video_fps << "\tframe_count: " << video_frame_count
<< std::endl;
// Create VideoWriter for output
cv::VideoWriter video_out;
std::string video_out_path("./");
video_out_path += video_out_name;
int fcc = cv::VideoWriter::fourcc('m', 'p', '4', 'v');
video_out.open(video_out_path, fcc, video_fps,
cv::Size(out_width, out_height), true);
if (!video_out.isOpened()) {
std::cout << "create video writer failed!" << std::endl;
return;
}
// Capture all frames and do inference
cv::Mat frame;
int frame_id = 0;
bool reach_end = false;
while (capture.isOpened()) {
std::vector<cv::Mat> imgs;
for (int i = 0; i < frame_num; i++) {
capture.read(frame);
if (!frame.empty()) {
imgs.push_back(frame);
} else {
reach_end = true;
}
}
if (reach_end) {
break;
}
std::vector<cv::Mat> results;
model.Predict(imgs, results);
for (auto& item : results) {
// cv::imshow("13",item);
// cv::waitKey(30);
video_out.write(item);
std::cout << "Processing frame: " << frame_id << std::endl;
frame_id += 1;
}
}
std::cout << "inference finished, output video saved at " << video_out_path
<< std::endl;
capture.release();
video_out.release();
}
int main(int argc, char* argv[]) {
if (argc < 4) {
std::cout << "Usage: infer_demo path/to/model_dir path/to/video frame "
"number run_option, "
"e.g ./infer_model ./vsr_model_dir ./vsr_src.mp4 0 2"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with gpu; 2: run with gpu and use tensorrt backend."
<< std::endl;
return -1;
}
int frame_num = 2;
if (argc == 5) {
frame_num = std::atoi(argv[4]);
}
if (std::atoi(argv[3]) == 0) {
CpuInfer(argv[1], argv[2], frame_num);
} else if (std::atoi(argv[3]) == 1) {
GpuInfer(argv[1], argv[2], frame_num);
} else if (std::atoi(argv[3]) == 2) {
TrtInfer(argv[1], argv[2], frame_num);
}
return 0;
}