-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathinference.py
50 lines (41 loc) · 1.32 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from PIL import Image
from pathlib import Path
import numpy as np
import random
import onnxruntime as ort
import torchvision.transforms as transforms
def inference(path):
def to_numpy(tensor):
return (
tensor.detach().cpu().numpy()
if tensor.requires_grad
else tensor.cpu().numpy()
)
input_img = Image.open(path).convert("RGB")
to_tensor = transforms.ToTensor()
input_img = to_tensor(input_img)
input_img = input_img.unsqueeze(0)
ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(input_img)}
ort_output = ort_session.run(None, ort_inputs)[0][0]
return ort_output
ort_session = ort.InferenceSession("checkpoints/best.onnx")
if __name__ == "__main__":
count = 0
correct = 0
for path in list(Path("datasets/test/y/").glob("*")):
n_value, y_value = inference(path)
out = True if y_value > n_value else False
count += 1
if out:
correct += 1
else:
print('error', path)
for path in list(Path("datasets/test/n/").glob("*")):
n_value, y_value = inference(path)
out = True if y_value > n_value else False
count += 1
if not out:
correct += 1
else:
print('error', path)
print(f'{correct} / {count}, {correct / count}')