-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmonte_carlo_eps.py
executable file
·124 lines (80 loc) · 2.82 KB
/
monte_carlo_eps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import numpy as np
from GridWorld import standard_grid , negative_grid , ACTION_SPACE
from Policy_evaluation_deterministic import print_policy , print_values
gamma = 0.9
eps = 0.05
def play_game(grid , policy , max_steps = 20):
s = grid.reset()
a = epslion_greedy(policy , s)
states = [s]
rewards = [0]
actions = [a]
it = 0
while it<=max_steps:
r = grid.move(a)
next_s = grid.get_next_state(s , a)
new_a = epslion_greedy(policy , next_s)
if not grid.game_over():
states.append(next_s)
actions.append(new_a)
rewards.append(r)
a = policy
s = next_s
it+=1
return states,actions,rewards
def epslion_greedy(policy ,s , EPS = eps ):
if np.random.random()>EPS:
print("explored")
return np.random.choice(ACTION_SPACE)
else:
return policy[s]
def max_d(d):
max_value = max(d.values())
max_keys = []
for keys , values in d.items():
if max_value == values:
max_keys.append(keys)
return np.random.choice(max_keys) , max_value
if __name__ == '__main__':
grid = standard_grid()
print("rewards:")
print_values(grid.rewards , grid)
policy = {}
for s in grid.actions.keys():
policy[s] = np.random.choice(ACTION_SPACE)
print("policy:")
print_policy(policy,grid)
Q ={}
number = {}
states = grid.all_states()
for s in grid.all_states():
if not grid.is_terminal(s):
Q[s]={}
number[s] = {}
for a in ACTION_SPACE:
Q[s][a] =0
number[s][a] = 0
else:
pass
for _ in range(10000):
states, actions, rewards =play_game(grid , policy)
state_actions = list(zip(states, actions))
T = len(states)
G =0
for t in range( T-2 , -1 ,-1):
s= states[t]
a = actions[t]
G = rewards[t+1]+ gamma * G
if (s , a) not in state_actions[:t]:
old_q = Q[s][a]
number[s][a]+=1
rp = 1/number[s][a]
Q[s][a] = old_q + rp * (G - old_q)
policy[s] = max_d(Q[s])[0]
print("Updated policy:")
print_policy(policy, grid)
v={}
for s , qs in Q.items():
v[s] = max_d(Q[s])[1]
print("Values:")
print_values(v , grid)