-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathssh_method5_paris6k.m
104 lines (86 loc) · 4.13 KB
/
ssh_method5_paris6k.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
addpath helpers/
addpath local_data/
if exist('aml') ~= 3
mex -compatibleArrayDims aml.c
end
run ./matconvnet-1.0-beta25/matlab/vl_setupnn.m
main_folder = '/Users/wc/Desktop/CBIR CCTV/'; % oxford5k/ and paris6k/ should be in here
dataset = 'Paris6k_dataset/paris_images'; % dataset to evaluate on
dataset_folder = [main_folder, dataset, '/'];
% --------------------------- parameters of the method ---------------------------
rerank = 1000; %1000 % number of images to re-rank, no re-ranking if 0
L = 3; % number of levels in the region pyramid of R-MAC
step_box = 3; % parameter t in the paper
qratio_t = 1.1; % parameter s in the paper
rf_step = 3; % fixed step for refinement
rf_iter = 5; % number of iterations of refinement
nqe = 5;
% --------------------------------------------------------------------------------
fprintf('Loading Neural Networks... \n');
load AlexNet
load VGG16Net
fprintf('Preparing Database... \n');
load rmac_paris6k
load conv3d_paris6k
fprintf('Preparing Preprocessing... \n');
load eigval_oxford5k
load eigvec_oxford5k
load Xm_oxford5k
fprintf ('Extracing Query Images... \n');
load gnd_paris6k
load bbx_distribution
%bbx_ratio = generate_random_bbx_ratio ('gnd_paris6k',bbx_distribution);
ratio = 0.4;
bbx_ratio = generate_specified_bbx_ratio ('gnd_paris6k',ratio);
qimlist = {gnd_paris6k.imlist{gnd_paris6k.qidx}};
random_bbx = generate_random_bbx (bbx_ratio,qimlist,dataset_folder);
qim = arrayfun(@(x) crop_qim([dataset_folder, qimlist{x}, '.jpg'], random_bbx(x,1:4)), 1:numel(gnd_paris6k.qidx), 'un', 0);
fprintf ('Preprocessing Query Features... \n');
qvecs_loc = cellfun(@(x) vecpostproc(mac(x, AlexNet)), qim, 'un', 0); % mac feature vector for all 55 queries
qvecs = cellfun(@(x) vecpostproc(rmac_regionvec(x, AlexNet, L)), qim, 'un', 0); % step 1 and 2 (L2 normed)
qvecs = cellfun(@(x) vecpostproc(apply_whiten (x, Xm_oxford5k, eigvec_oxford5k, eigval_oxford5k)), qvecs, 'un', 0); % step 3 and 4
qvecs = cellfun(@(x) vecpostproc(sum(x, 2)), qvecs, 'un', 0); % step 5 and 6
fprintf('Initial Filtering... \n');
load gnd_paris6k
qvecs = cell2mat(qvecs);
% retrieval with inner product
[sim,ranks] = sort(rmac_paris6k'*qvecs, 'descend');
map = compute_map (ranks, gnd_paris6k.gnd); % can be used in my own code
fprintf('mAP, without re-ranking = %.4f\n', map);
ranks_rerank = ranks;
conv3d = conv3d_paris6k;
Xm = Xm_oxford5k;
eigvec = eigvec_oxford5k ;
eigval = eigval_oxford5k;
gnd_test = gnd_paris6k;
if rerank
load VGG16Net
for q = 1:numel(qim)
qratio = size(qim{q}, 1) / size(qim{q}, 2);
ids_toplist = ranks(1:rerank, q);
conv3d_toplist = arrayfun(@(y)floor((15+((conv3d{y}>=128)*128+conv3d{y}.*(conv3d{y}<128)))/16), ids_toplist, 'un', 0);
% perform the AML
bestbox = cellfun(@(x) aml(double(x), int32(10), double(qvecs_loc{q}), qratio, qratio_t, step_box, rf_step, rf_iter), conv3d_toplist, 'un', 0);
% ---------------- Method 5 -----------------
qvec_4096 = encode_4096_feature (qim{q},VGG16Net);% calculated the fc feature for query
vecs_rerank_4096 = zeros (4096,rerank);
tic;
for i = 1:rerank
image_tmp = imread (strcat (dataset_folder,char (gnd_test.imlist(ids_toplist(i))),'.jpg'));
conv3d_tmp = conv3d_toplist{i};
bestbox_tmp = bestbox{i};
[bbx,im_crop] = feature2image_coordinate (image_tmp,conv3d_tmp,bestbox_tmp);% reflecting feature coord back to image coord
vecs_rerank_4096 (:,i) = encode_4096_feature (im_crop,VGG16Net);
end
fprintf ('Reranking Image %.1f takes %.4f Second -- Experiment 3 Paris6k, ratio = %.2f \n',q,toc,ratio);
% --------------------------------------------------
% re-compute similarity and re-rank
scores_rerank = vecs_rerank_4096' * qvec_4096;
[~, idx] = sort(scores_rerank, 'descend');
ranks_rerank(1:rerank, q) = ranks_rerank(idx, q);
end
end
map = compute_map (ranks, gnd_paris6k.gnd); % can be used in my own code
fprintf('mAP, without re-ranking = %.4f -- Paris6k \n', map);
map = compute_map (ranks_rerank, gnd_paris6k.gnd);
fprintf('mAP, with fc AML re-ranking = %.4f -- Paris6k \n', map);