-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSecondIntro.py
108 lines (71 loc) · 2.3 KB
/
SecondIntro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import streamlit as st
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
from PIL import Image
# #Set title
st.title('JL Data')
image=Image.open("C:\\Users\\Hp\\OneDrive\\Pictures\\logo-color.png")
st.image(image,use_column_width=True)
#Set subtitle
st.write("""# A simple Data App With Streamlit""")
st.write("""Let's Explore different classifiers and datasets""")
dataset_name=st.sidebar.selectbox('Select ddataset',('Breast Cancer','Iris','Wine'))
classifier_name=st.sidebar.selectbox('Select classifier',('SVM','KNN'))
def get_dataset(name):
data=None
if name=='Iris':
data=datasets.load_iris()
elif name=='Wine':
data=datasets.load_wine()
else:
data=datasets.load_breast_cancer()
x=data.data
y=data.target
return x,y
x,y=get_dataset(dataset_name)
st.dataframe(x)
st.write('Shape of your dataset is:',x.shape)
st.write('unique target variables:',len(np.unique(y)))
fig=plt.figure()
sns.boxplot(data=x,orient='h')
st.set_option('deprecation.showPyplotGlobalUse', False)
st.pyplot()
plt.hist(x)
st.pyplot()
#BUILDING OUR ALGORITHM
def add_parameter(name_of_clf):
params=dict()
if name_of_clf=='SVM':
c=st.sidebar.slider('C',0.01,15.0)
params['C']=c
else:
name_of_clf='KNN'
k=st.sidebar.slider('k',1,15)
params['k']=k
return params
params=add_parameter(classifier_name)
#Accessing our classifier
def get_classifier(name_of_clf,params):
clf=None
if name_of_clf=='SVM':
clf=SVC(C=params['C'])
elif name_of_clf=='KNN':
clf=KNeighborsClassifier(n_neighbors=params['k'])
else:
st.warning("you didn't select any option,please select at least one algo")
return clf
clf=get_classifier(classifier_name,params)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=10)
clf.fit(x_train,y_train)
y_pred=clf.predict(x_test)
st.write(y_pred)
accuracy=accuracy_score(y_test,y_pred)
st.write('classifier_name:',classifier_name)
st.write('Accuracy for your model is:',accuracy)