-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsiamese_model3.lua
196 lines (156 loc) · 6.28 KB
/
siamese_model3.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
require 'nn'
local function block(network, filters)
network:add(nn.SpatialBatchNormalization(filters,1e-3))
network:add(nn.ReLU(true))
network:add(nn.SpatialConvolution(filters, filters, 1, 1, 1, 1, 0, 0))
network:add(nn.SpatialBatchNormalization(filters,1e-3))
network:add(nn.ReLU(true))
network:add(nn.SpatialConvolution(filters, filters, 1, 1, 1, 1, 0, 0))
network:add(nn.SpatialBatchNormalization(filters,1e-3))
network:add(nn.ReLU(true))
end
function build_network_model(gpu)
local base_encoder = nn.Sequential()
base_encoder:add(nn.SpatialConvolution( 3, 96, 11, 11, 4, 4, 5, 5))
block(base_encoder, 96)
base_encoder:add(nn.SpatialMaxPooling(3, 3, 2, 2, 1, 1))
base_encoder:add(nn.Dropout(0.2))
base_encoder:add(nn.SpatialConvolution(96, 256, 5, 5, 1, 1, 2, 2))
block(base_encoder, 256)
base_encoder:add(nn.SpatialMaxPooling(3, 3, 2, 2, 1, 1))
base_encoder:add(nn.Dropout(0.2))
base_encoder:add(nn.SpatialConvolution(256, 384, 3, 3, 1, 1, 1, 1))
block(base_encoder, 384)
base_encoder:add(nn.SpatialMaxPooling(3, 3, 2, 2, 1, 1))
base_encoder:add(nn.Dropout(0.2))
local base_encoder_init = require('weight-init')(base_encoder, 'MSRinit')
local base_encoder_clone = base_encoder_init:clone()
base_encoder_clone:share(base_encoder_init, 'weight', 'bias', 'gradWeight', 'gradBias', 'running_mean', 'running_std', 'running_var')
local siamese_encoder = nn.ParallelTable()
siamese_encoder:add(base_encoder_init)
siamese_encoder:add(base_encoder_clone)
local top_encoder = nn.Sequential()
top_encoder:add(nn.SpatialConvolution(2*384, 1024, 3, 3, 1, 1, 1, 1))
block(top_encoder, 1024)
top_encoder:add(nn.SpatialAveragePooling(8,8,1,1))
top_encoder:add(nn.View(-1):setNumInputDims(3))
local top_encoder_init = require('weight-init')(top_encoder, 'MSRinit')
local pred_layer_r = nn.Linear(3072, 1)
local pred_layer_t = nn.Linear(3072, 2)
pred_layer_r.weight:zero()
pred_layer_r.bias:zero()
pred_layer_t.weight:zero()
pred_layer_t.bias:zero()
local pred_layer = nn.ConcatTable()
pred_layer:add(pred_layer_r)
pred_layer:add(pred_layer_t)
local model = nn.Sequential()
model:add(siamese_encoder)
model:add(nn.JoinTable(2))
model:add(top_encoder_init)
model:add(pred_layer)
model:add(nn.JoinTable(2))
model:add(nn.View(-1,3))
local input = torch.Tensor(2, 3, 240, 320)
if gpu>0 then
model = model:cuda()
input = input:cuda()
cudnn.convert(model, cudnn)
local optnet = require 'optnet'
optnet.optimizeMemory(model, {input,input}, {inplace=true, mode='training'})
end
return model
end
function build_network_model_pretrain(gpu)
local base_encoder = nn.Sequential()
base_encoder:add(nn.SpatialConvolution( 3, 96, 11, 11, 4, 4, 5, 5))
block(base_encoder, 96)
base_encoder:add(nn.SpatialMaxPooling(3, 3, 2, 2, 1, 1))
base_encoder:add(nn.Dropout(0.2))
base_encoder:add(nn.SpatialConvolution(96, 256, 5, 5, 1, 1, 2, 2))
block(base_encoder, 256)
base_encoder:add(nn.SpatialMaxPooling(3, 3, 2, 2, 1, 1))
base_encoder:add(nn.Dropout(0.2))
base_encoder:add(nn.SpatialConvolution(256, 384, 3, 3, 1, 1, 1, 1))
block(base_encoder, 384)
base_encoder:add(nn.SpatialMaxPooling(3, 3, 2, 2, 1, 1))
base_encoder:add(nn.Dropout(0.2))
base_encoder:add(nn.View(-1):setNumInputDims(3))
local base_encoder_init = require('weight-init')(base_encoder, 'MSRinit')
local base_encoder_clone = base_encoder_init:clone()
base_encoder_clone:share(base_encoder_init, 'weight', 'bias', 'gradWeight', 'gradBias', 'running_mean', 'running_std', 'running_var')
local siamese_encoder = nn.ParallelTable()
siamese_encoder:add(base_encoder_init)
siamese_encoder:add(base_encoder_clone)
local model = nn.Sequential()
model:add(siamese_encoder)
model:add(nn.PairwiseDistance(2)) --L2 pariwise distance
local input = torch.Tensor(2, 3, 240, 320)
if gpu>0 then
model = model:cuda()
input = input:cuda()
cudnn.convert(model, cudnn)
local optnet = require 'optnet'
optnet.optimizeMemory(model, {input,input}, {inplace=true, mode='training'})
end
return model
end
function load_network_model_pretrain(gpu, filename)
local siamese_encoder = torch.load(filename)
siamese_encoder:remove(#siamese_encoder) --nn.PairwiseDistance
siamese_encoder.modules[1].modules[1]:remove(34) --nn.View from curr branch
siamese_encoder.modules[1].modules[2]:remove(34) --nn.View from base branch
--[[
--freeze weights
for i=1, #siamese_encoder.modules[1].modules[1] do
siamese_encoder.modules[1].modules[1].modules[i].accGradParameters = function(i, o ,e) end
siamese_encoder.modules[1].modules[1].modules[i].updateParameters = function(i, o, e) end
siamese_encoder.modules[1].modules[2].modules[i].accGradParameters = function(i, o ,e) end
siamese_encoder.modules[1].modules[2].modules[i].updateParameters = function(i, o, e) end
end
--]]
local top_encoder = nn.Sequential()
top_encoder:add(nn.SpatialConvolution(2*384, 1024, 3, 3, 1, 1, 1, 1))
block(top_encoder, 1024)
top_encoder:add(nn.SpatialAveragePooling(8,8,1,1))
top_encoder:add(nn.View(-1):setNumInputDims(3))
local top_encoder_init = require('weight-init')(top_encoder, 'MSRinit')
local pred_layer_r = nn.Linear(3072, 3)
local pred_layer_t = nn.Linear(3072, 3)
pred_layer_r.weight:zero()
pred_layer_r.bias:zero()
pred_layer_t.weight:zero()
pred_layer_t.bias:zero()
local pred_layer = nn.ConcatTable()
pred_layer:add(pred_layer_r)
pred_layer:add(pred_layer_t)
local model = nn.Sequential()
model:add(siamese_encoder)
model:add(nn.JoinTable(2))
model:add(top_encoder_init)
model:add(pred_layer)
model:add(nn.JoinTable(2))
model:add(nn.View(-1,6))
local input = torch.Tensor(2, 3, 240, 320)
if gpu>0 then
model = model:cuda()
input = input:cuda()
cudnn.convert(model, cudnn)
local optnet = require 'optnet'
optnet.optimizeMemory(model, {input,input}, {inplace=true, mode='training'})
end
return model
end
--[[
require 'cudnn'
--local model = load_network_model_pretrain(1, 'pretrain_model.t7')
local model = build_network_model(1)
local input = torch.Tensor(2, 3, 240, 320)
input = input:cuda()
model = model:cuda()
local output = model:forward({input,input})
print(model)
print(output:size())
params, grad_params = model:getParameters()
print('Number of parameters ' .. params:size(1))
--]]