forked from yetkinyilmaz/tracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreconstruct.py
63 lines (39 loc) · 2.14 KB
/
reconstruct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import pandas as pd
import numpy as np
import Clustering as trk
import Fitting as fit
N = 1000
if __name__ == '__main__':
print("Reading file ...")
fitter = fit.TrackFitter(B=1.)
data_track = pd.DataFrame({'event_id':[0],'track_id':[0],'pt':[0.], 'phi':[0.], 'xVtx':[0.], 'yVtx':[0.]})
data_track = data_track.drop(data_track.index[[0]])
df = pd.read_csv("hits_"+str(N)+".csv")
y_df = df[['particle']]
# X_df = df.drop(['hit','layer','particle','event'], axis=1)
# X_df = df.drop(['cluster_id','layer','iphi'], axis=1)
#replace particle with 100000000*event+particle
y_train = df['particle'].values + df['event'].values * 1000
tracker = trk.ClusterDBSCAN(eps=0.004, rscale=0.001)
tracker.fit(X_df.values[:1000], y_train[:1000])
df_result = df.drop(['particle'], axis=1)
y_predicted = tracker.predict(df_result.values)
df_result=pd.concat([df_result,pd.DataFrame({'track':y_predicted})],axis=1)
for col in ['event','track']:
df_result[col] = df_result[col].astype('int32')
df_result_truth=pd.concat([df_result,pd.DataFrame({'particle':y_train})],axis=1)
df_result_truth['particle'] = df_result_truth['particle'].astype('int32')
df_result.to_csv("result_"+str(N)+".csv",header=True,cols=['event','track', 'x', 'y'], engine='python')
df_result_truth.to_csv("result_truth_"+str(N)+".csv",header=True,cols=['event','particle','track', 'x', 'y'], engine='python')
# event loop for fitting
for ievent in []: # np.unique(df['event'].values):
if ievent % 100 == 0 : print("processing event ", ievent)
event_indices=(df['event']==ievent).values
event_df = df.loc[event_indices]
y_event_predicted = y_predicted[event_indices]
# y_event_predicted = y_event_predicted + [ievent*1000]*len(y_event_predicted)
y_predicted = np.append(y_predicted,y_event_predicted)
for itrack in np.unique(y_event_predicted):
xhit = X_df['x'].values[y_event_predicted[:] == itrack]
yhit = X_df['y'].values[y_event_predicted[:] == itrack]
# pt,phi,vx,vy,chg=fitter.fit(xhit,yhit)