-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn_model.py
38 lines (33 loc) · 1.2 KB
/
cnn_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import tensorflow as tf
import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow.keras.optimizers import RMSprop
# CNNのモデルを定義する
def def_model(in_shape, nb_classes):
model = Sequential()
model.add(Conv2D(32,
kernel_size=(3,3),
activation="relu",
input_shape=in_shape))
model.add(Conv2D(32, (3, 3), activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), activation="relu"))
model.add(Conv2D(64, (3, 3), activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512, activation="relu"))
model.add(Dropout(0.5))
model.add(Dense(nb_classes, activation="softmax"))
return model
# コンパイル済みのCNNのモデルを返す
def get_model(in_shape, nb_classes):
model = def_model(in_shape, nb_classes)
model.compile(
loss="categorical_crossentropy",
optimizer=RMSprop(),
metrics=["accuracy"])
return model