-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathMakefile
57 lines (49 loc) · 1.28 KB
/
Makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
clean:
docker rm -f $$(docker ps -qa)
build:
docker build -t rggnet-docker .
run:
docker run -it \
--runtime=nvidia \
--net=host \
--privileged=true \
--ipc=host \
--volume="/tmp/.X11-unix:/tmp/.X11-unix:ro" \
--env="DISPLAY" \
--env="QT_X11_NO_MITSHM=1" \
--hostname="inside-DOCKER" \
--name="rggnet-experiment" \
-v ${PWD}:/root/rggnet \
-v ${PWD}/kitti:/root/kitti \
rggnet-docker bash
test:
echo "Running test ..."
export CUDA_VISIBLE_DEVICES=0 && pytest training/tests/
test-tfrecords:
export CUDA_VISIBLE_DEVICES=0 && python -m training.tests.test_tfrecords
# Below are new commands
awesome-train-vae:
python commander.py train \
--model_name "vae" \
--gpu 0 \
--clean_up False
awesome-train-rggnet:
python commander.py train \
--model_name "rggnet" \
--gpu 0 \
--clean_up False
awesome-train-rggnet-novae:
python commander.py train \
--model_name "rggnet_novae" \
--gpu 0 \
--clean_up False
awesome-train-rggnet-3dstn:
python commander.py train \
--model_name "rggnet_3dstn" \
--gpu 1 \
--clean_up False
eval-rggnet:
export CUDA_VISIBLE_DEVICES=0 && python -m training.apps.evaluator process \
--config_fp ../config/inference.yaml \
--model_name rggnet \
--res_fp report