-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathnewer_college_data_generator.py
455 lines (421 loc) · 22.8 KB
/
newer_college_data_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
from box import Box
import cv2
import fire
import multiprocessing
import numpy as np
import open3d as o3d
import os
import pandas as pd
import pathlib
import pickle
import random
import tensorflow as tf
from tqdm import tqdm
import yaml
from data_generator_base import Generator
from utils import projection
class NewerCollegeGenerator(Generator):
"""
├── infra1
├── infra1_1583836591_152386717.png
├── ....
├── ouster_scan
├── cloud_1583836591_182590976.pcd
├── ....
└── timeoffset
├── nc-long-time-offsets.csv
├── nc-moving-people-time-offsets.csv
├── nc-parkland-mound-time-offsets.csv
├── nc-quad-with-dynamics-time-offsets.csv
├── nc-short-time-offsets.csv
└── nc-spinning-time-offsets.csv
"""
zs = []
@staticmethod
def get_calibration_mtx(calibrations, sensors_info):
h, w = sensors_info.camera.shape
R_hom = np.array(calibrations.R_hom)
P = np.array(calibrations.P)
lidar_to_lidar_imu_hom = np.array(calibrations.lidar_to_lidar_imu_hom)
lidar_imu_to_cam_hom = np.array(calibrations.lidar_imu_to_cam_hom)
cam_intrinsics_mtx, roi = cv2.getOptimalNewCameraMatrix(R_hom, P, (w, h), 1, (w, h))
lidar_to_cam = np.dot(lidar_to_lidar_imu_hom, lidar_imu_to_cam_hom.T).T
return cam_intrinsics_mtx, lidar_to_cam
@staticmethod
def offset_with_timestamp(ts, offsets):
"""
:param ts: a sorted array of ts, such as 1583836591.1523867
:param offsets: csv file
%time field.header.seq field.header.stamp field.header.frame_id field.timeOffset
0 1583836591137266441 0 1583836621196352959 NaN 0.056011
1 1583836591137266441 1 1583836651489880085 NaN 0.055845
:return:
"""
ts_with_offset = []
cursor = 0
offset_start = offsets["%time"][cursor]
offset_end = offsets["field.header.stamp"][cursor]
for _ts in ts:
print(_ts)
if offset_start > _ts:
raise Exception("Offset datasets seem problematic!")
if offset_start <= _ts <= offset_end:
print("{} ~ {}: {}".format(offset_start, offset_end, offsets["field.timeOffset"][cursor]))
ts_with_offset.append(_ts - offsets["field.timeOffset"][cursor])
if _ts > offset_end:
offset_start = offsets["field.header.stamp"][cursor]
if cursor >= len(offsets["field.timeOffset"]) - 1:
# TODO: This data seems not proividing the offsets. Thus we discard
# ts_with_offset.append(_ts)
continue
cursor += 1
offset_end = offsets["field.header.stamp"][cursor]
if offset_start <= _ts <= offset_end:
print("{} ~ {}".format(offset_start, offset_end))
ts_with_offset.append(_ts - offsets["field.timeOffset"][cursor])
else:
raise Exception("Offset datasets seem problematic!")
return ts_with_offset
def get_raw_data_info(self, data_fp, data_info, lidar_sub_folder, camera_sub_folder, time_offsets_csv_fp):
interested_folders = [lidar_sub_folder, camera_sub_folder]
for root, dirs, files in os.walk(data_fp):
for _dir in dirs:
if _dir not in interested_folders:
print("Folder {} not interested, skip!".format(_dir))
continue
_sub_folder = "{}/{}".format(root, _dir)
for _subroot, _subdirs, _subfiles in os.walk(_sub_folder):
for _subfile in _subfiles:
_fp = "{}/{}".format(_subroot, _subfile)
_ts_info = _subfile.split("_")
_ts = "{}{}".format(_ts_info[1], _ts_info[2].split(".")[0])
if "(1)" in _ts:
_ts = _ts.split("(1)")[0]
data_info["sorted_{}_ts".format(_dir)].append(int(_ts))
data_info[_dir]["{}".format(int(_ts))] = _fp
for _sub_folder in interested_folders:
data_info["sorted_{}_ts".format(_sub_folder)] = np.sort(data_info["sorted_{}_ts".format(_sub_folder)])
data_info["time_offsets"] = pd.read_csv("{}/{}".format(data_fp, time_offsets_csv_fp))
data_info["sorted_{}_ts_after_offset".format(camera_sub_folder)] = \
self.offset_with_timestamp(ts=data_info["sorted_{}_ts".format(camera_sub_folder)], offsets=data_info["time_offsets"])
return data_info
@staticmethod
def sync_data(data_info, lidar_sub_folder, camera_sub_folder):
sorted_ouster_scan_ts = data_info["sorted_{}_ts".format(lidar_sub_folder)]
sorted_infra1_ts_after_offset = data_info["sorted_{}_ts_after_offset".format(camera_sub_folder)]
data_info['synced_data_paris'] = {
'paired_fp_seq': [],
'paired_ts_seq': [],
'paired_ts_diff': []
}
last_cursor = 0
for _idx, _ouster_scan_ts in enumerate(sorted_ouster_scan_ts):
_paired_ts = []
_paired_fs = []
_min_diff = np.inf
for _cursor, _infra1_ts_after_offset in enumerate(sorted_infra1_ts_after_offset):
if _cursor < last_cursor:
continue
_diff = abs(_ouster_scan_ts - _infra1_ts_after_offset)
if _diff <= _min_diff:
_min_diff = _diff
last_cursor += 1
_paired_ts = [_ouster_scan_ts, _infra1_ts_after_offset]
_paired_fs = [
data_info[lidar_sub_folder]["{}".format(_ouster_scan_ts)],
data_info[camera_sub_folder]["{}".format(data_info["sorted_{}_ts".format(camera_sub_folder)][_cursor])]
]
else:
continue
if len(_paired_ts) > 0:
data_info['synced_data_paris']['paired_fp_seq'].append(_paired_fs)
data_info['synced_data_paris']['paired_ts_seq'].append(_paired_ts)
data_info['synced_data_paris']['paired_ts_diff'].append(_min_diff)
return data_info
def get_training_examples_data_info(self, config, data_info_synced, visualization=False):
"""
:param config:
:param data_info_synced:
data_info = {
lidar_sub_folder: {},
camera_sub_folder: {},
"sorted_{}_ts".format(lidar_sub_folder): [],
"sorted_{}_ts".format(camera_sub_folder): [],
"sorted_{}_ts_after_offset".format(camera_sub_folder): [],
"time_offsets": None,
"synced_data_paris" :
{
'paired_fp_seq': [],
'paired_ts_seq': [],
'paired_ts_diff': []
}
}
:return:
"""
# Print example of paired_fp_seq and paired_ts_seq
# print(data_info_synced["synced_data_paris"]["paired_fp_seq"][:5])
# print(data_info_synced["synced_data_paris"]["paired_ts_seq"][:5])
"""
Sorted!
[
[
'/media/kaiwen/extended/new_college/raw_data/ouster_scan/cloud_1583836591_182590976.pcd',
'/media/kaiwen/extended/new_college/raw_data/infra1/infra1_1583836591_185609553.png'
],
[
'/media/kaiwen/extended/new_college/raw_data/ouster_scan/cloud_1583836591_282592512.pcd',
'/media/kaiwen/extended/new_college/raw_data/infra1/infra1_1583836591_285496294.png'
]
]
[[1583836591182590976, 1.5838365911856095e+18], [1583836591282592512, 1.5838365912854963e+18]]
"""
datasets_name = config.name
sampling_window = int(config.training_data.sampling_window)
sampling_stride = int(config.training_data.sampling_stride)
print("Sliding window is {}".format(sampling_window)) # 6
training_examples_data_info = []
R, T = self.get_calibration_mtx(config.calibrations, config.sensors_info)
for _seq, _paired_frame in enumerate(data_info_synced["synced_data_paris"]["paired_fp_seq"]):
if _seq < int(config.training_data.skip_frames):
continue
# cnt = 0
# (-6, 1) -> (-6, -5, -4, -3, -2, -1, 0)
# cnt >>
# [camera, camera, camera], ... , [camera, camera, camera] : sampling_window
# ..., >>>lidar<<<<, lidar , lidar, ....
#_i = random.choice(range(- sampling_window * sampling_stride, 1, sampling_stride))
for _i in range(- sampling_window * sampling_stride, 1, sampling_stride):
if _seq + _i < 0:
continue
cnt = range(- sampling_window * sampling_stride, 1, sampling_stride).index(_i)
start_cam_idx = _seq - (sampling_window - cnt) * sampling_stride
end_cam_idx = start_cam_idx + sampling_window * sampling_stride + 1
label_rel_idx = sampling_window - cnt
example = {
'x.lidar.fp': _paired_frame[0],
'y.camera.fp': _paired_frame[1],
'x.camera.fps': [x[1] for x in data_info_synced["synced_data_paris"]["paired_fp_seq"][
start_cam_idx: end_cam_idx: sampling_stride]],
'y.label': label_rel_idx,
'seq_id': _seq
}
if visualization:
pts = o3d.io.read_point_cloud(example["x.lidar.fp"])
pts_xyz = np.asarray(pts.points)
overlay_gt = projection.display_projected_img(pts_xyz, example["y.camera.fp"], T, R, datasets_name=datasets_name)
for _x_camera_fp in example["x.camera.fps"]:
print(example)
overlay_offset = projection.display_projected_img(pts_xyz, _x_camera_fp, T, R, datasets_name=datasets_name)
overlay = np.concatenate([overlay_offset, overlay_gt], 1)
cv2.imshow("overlay_gt{}".format(example['y.label']), overlay)
cv2.waitKey(0)
training_examples_data_info.append(example)
# cnt += 1
if visualization:
cv2.destroyAllWindows()
print("Generated {} training examples".format(len(training_examples_data_info)))
# Generated 102515 training examples
return training_examples_data_info
@staticmethod
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
def generate_training_paris_and_serialize_one_chunk_to_tfrecords(self, config, output_fp, chunk_idx, data_chunk,
camera_sensor_H, camera_sensor_W):
if not os.path.isdir(output_fp):
print("{} does not exits, creating one.".format(output_fp))
pathlib.Path(output_fp).mkdir(parents=True, exist_ok=True)
print("Creating {} th chunk of the tfrecords ...".format(chunk_idx))
if not config.debug_mode:
writer = tf.python_io.TFRecordWriter("{}/{}.tfrecord".format(output_fp, chunk_idx))
datasets_name = config.name
crop_h_start = int(config.training_data.crop_shape[0][0])
crop_h_end = int(config.training_data.crop_shape[0][1])
crop_w_start = int(config.training_data.crop_shape[1][0])
crop_w_end = int(config.training_data.crop_shape[1][1])
for _idx, _one_raw_data in enumerate(data_chunk):
example_dict = {}
label = _one_raw_data['y.label']
R, T = self.get_calibration_mtx(config.calibrations, config.sensors_info)
pts = o3d.io.read_point_cloud(_one_raw_data['x.lidar.fp'])
pts_xyz = np.asarray(pts.points)
X_dense_depth_map_data, z_before_norm = projection.get_dense_depth_map(
pts_xyz=pts_xyz,
H=camera_sensor_H,
W=camera_sensor_W,
T=T,
R=R,
datasets_name=datasets_name,
get_z_before_norm=True,
norm_methods=config.training_data.z_norm_methods,
lidar_range=config.sensors_info.lidar.range)
self.zs += list(z_before_norm)
# self.print_stats()
cnt = 0
if len(_one_raw_data['x.camera.fps']) != config.training_data.sampling_window + 1:
print("It shall have {} data but only got {} instead.".format(
config.training_data.sampling_window + 1, len(_one_raw_data['x.camera.fps'])))
continue
X_dense_depth_map_data_size = (X_dense_depth_map_data.shape[1], X_dense_depth_map_data.shape[0])
expected_size = (int(config.training_data.features.X.W), int(config.training_data.features.X.H))
X_dense_depth_map_data = X_dense_depth_map_data[crop_h_start:crop_h_end, :, :]
X_dense_depth_map_data = np.expand_dims(cv2.resize(X_dense_depth_map_data, expected_size), axis=-1)
X = None
display = None
X_dense_depth_map_data_display = None
for _idx_fp, _camera_fp in enumerate(_one_raw_data['x.camera.fps']):
cnt += 1
X_camera_data = cv2.imread(_camera_fp)
X_camera_data = cv2.resize(X_camera_data, X_dense_depth_map_data_size)
X_camera_data = X_camera_data[crop_h_start:crop_h_end, :, :]
X_camera_data = cv2.resize(X_camera_data, expected_size)
_X = np.concatenate([X_camera_data, X_dense_depth_map_data], -1).astype(np.float32)
if config.debug_mode:
if display is None:
X_dense_depth_map_data_display = cv2.applyColorMap(X_dense_depth_map_data.astype(np.uint8), cv2.COLORMAP_JET)
display = cv2.addWeighted(X_camera_data, 0.5, X_dense_depth_map_data_display, 0.5, 1)
else:
display = np.concatenate([display, cv2.addWeighted(X_camera_data, 0.5, X_dense_depth_map_data_display, 0.5, 1)], 0)
if X is None:
X = _X
else:
X = np.concatenate([X, _X], -1)
example_dict.update({
config.training_data.features.X.feature_name: tf.train.Feature(
float_list=tf.train.FloatList(value=X.flatten().astype(np.float32))),
config.training_data.features.Y.feature_name: tf.train.Feature(float_list=tf.train.FloatList(
value=[label])),
})
example = tf.train.Example(features=tf.train.Features(feature=example_dict))
if not config.debug_mode:
writer.write(example.SerializeToString())
else:
cv2.imshow("new_college.png", display.astype(np.uint8))
cv2.imwrite("nuscene.png", display)
cv2.waitKey(0)
if not config.debug_mode:
writer.close()
print("Created {}.{}.tfrecord".format(output_fp, chunk_idx))
else:
cv2.destroyAllWindows()
def generate_training_paris_and_serialize_to_tfrecords(self, datasets, config, name):
_data_chunks = self.chunks(lst=datasets, n=config.training_data.chunk_size)
output_fp = "{}/{}".format(config.training_data.output_dir, name)
print("Creating {} tfrecord with each including {} examples............".format(
len(datasets) / config.training_data.chunk_size, config.training_data.chunk_size))
camera_sensor_H, camera_sensor_W = config.sensors_info.camera.shape
jobs = []
for _chunk_idx, _data_chunk in tqdm(enumerate(_data_chunks)):
if config.debug_mode:
self.generate_training_paris_and_serialize_one_chunk_to_tfrecords(config, output_fp, _chunk_idx, _data_chunk, camera_sensor_H, camera_sensor_W)
else:
p = multiprocessing.Process(
target=self.generate_training_paris_and_serialize_one_chunk_to_tfrecords,
args=(config, output_fp, _chunk_idx, _data_chunk, camera_sensor_H, camera_sensor_W))
jobs.append(p)
p.start()
def generate_training_data(self, config, re_sync, *args, **kwargs):
"""
example = {
'x.lidar.fp': _paired_frame[0],
'y.camera.fp': _paired_frame[1],
'x.camera.fps': [x[1] for x in data_info_synced["synced_data_paris"]["paired_fp_seq"][_seq + _i: _seq + _i + sampling_window + 1]],
'y.label': -_i
}
:param config:
:param args:
:param kwargs:
:return:
"""
print("Configs: \n{}".format(config))
camera_sub_folder = config.raw_data.camera_sub_folder
lidar_sub_folder = config.raw_data.lidar_sub_folder
time_offsets_csv_fp = config.raw_data.time_offsets_csv_fp
_synced_raw_data_info = config.raw_data.generated_fp.synced_raw_data_info
if re_sync:
print("Step1: scan folder to construct data_info: raw data not loaded ...")
data_info = {
lidar_sub_folder: {},
camera_sub_folder: {},
"sorted_{}_ts".format(lidar_sub_folder): [],
"sorted_{}_ts".format(camera_sub_folder): [],
"sorted_{}_ts_after_offset".format(camera_sub_folder): [],
"time_offsets": None
}
data_info = self.get_raw_data_info(
data_fp=config.raw_data.root_dir,
data_info=data_info,
camera_sub_folder=camera_sub_folder,
lidar_sub_folder=lidar_sub_folder,
time_offsets_csv_fp=time_offsets_csv_fp
)
print("Step2: synchronize the data: raw data not loaded...")
data_info_synced = self.sync_data(
data_info=data_info,
camera_sub_folder=camera_sub_folder,
lidar_sub_folder=lidar_sub_folder
)
print("Step3: Save the synced data info somewhere to avoid do it again...")
with open(_synced_raw_data_info, 'wb') as handle:
pickle.dump(data_info_synced, handle, protocol=pickle.HIGHEST_PROTOCOL)
else:
print("Data sync-ed process skip, directly loads from the pickle")
with open(_synced_raw_data_info, 'rb') as handle:
data_info_synced = pickle.load(handle)
training_examples_data_info = self.get_training_examples_data_info(config, data_info_synced,
visualization=False)
return training_examples_data_info
@staticmethod
def down_sample(data_info, downsample_ratio):
return random.sample(data_info, int(float(downsample_ratio) * len(data_info)))
def serialize_data_into_tfrecords(self, config, training_examples_data_info, *args, **kwargs):
# Step1: Split the data into training/validation/testing
sampling_window = int(config.training_data.sampling_window)
sampling_stride = int(config.training_data.sampling_stride)
padding_number = sampling_window * sampling_stride
# due to the way that we generate the training data,
# to avoid any observations occur in the validation/testing datasets, we add 20 in between
# namely:
# 0 ,....., 71760 th: training
# 71760 + 21 th, ..... 92263 th: validation
# 92263 + 21 th, .... 102515 th: testing
training_data_idx = int(float(config.training_data.split_ratio[0] * len(training_examples_data_info)))
validation_data_idx = int((float(config.training_data.split_ratio[0]) + float(config.training_data.split_ratio[1])) * len(training_examples_data_info))
print("Training data will be ranging from {} to {} ".format(0, training_data_idx))
print("Validation data will be ranging from {} to {} ".format(training_data_idx, validation_data_idx))
print("Testing data will be ranging from {} to {}".format(validation_data_idx, len(training_examples_data_info)))
training_data_examples_data_info = training_examples_data_info[0:training_data_idx]
validation_data_examples_data_info = training_examples_data_info[training_data_idx + padding_number: validation_data_idx]
testing_data_examples_data_info = training_examples_data_info[validation_data_idx + padding_number: ]
# Step2: Down sample the data
training_data_examples_data_info = self.down_sample(training_data_examples_data_info, config.training_data.downsample_ratio)
validation_data_examples_data_info = self.down_sample(validation_data_examples_data_info, config.training_data.downsample_ratio)
testing_data_examples_data_info = self.down_sample(testing_data_examples_data_info, config.training_data.downsample_ratio)
print("Summary:")
print("Training examples: {}".format(len(training_data_examples_data_info)))
print("Validation examples: {}".format(len(validation_data_examples_data_info)))
print("Testing examples: {}".format(len(testing_data_examples_data_info)))
# Training examples: 35880
# Validation examples: 10241
# Testing examples: 5115
print("Testing data start from: {}".format(testing_data_examples_data_info[0]))
self.generate_training_paris_and_serialize_to_tfrecords(training_data_examples_data_info, config, "training")
self.generate_training_paris_and_serialize_to_tfrecords(validation_data_examples_data_info, config, "validation")
self.generate_training_paris_and_serialize_to_tfrecords(testing_data_examples_data_info, config, "testing")
def print_stats(self):
print("Z:")
print("Max: {}".format(max(self.zs)))
print("Min: {}".format(min(self.zs)))
print("50 Percentile: {}".format(np.percentile(np.array(self.zs), 50)))
print("90 Percentile: {}".format(np.percentile(np.array(self.zs), 90)))
def run(self, config_fp, re_sync, *args, **kwargs):
print("Step1: Loading configuration file ...")
config = Box(yaml.load(open(config_fp, 'r').read()))
print("Step2: Generate training data ...")
training_examples_data_info = self.generate_training_data(config=config, re_sync=re_sync)
print("Step3: Serialize data into tfrecords ...")
self.serialize_data_into_tfrecords(config=config, training_examples_data_info=training_examples_data_info)
# self.print_stats()
if __name__ == '__main__':
fire.Fire(NewerCollegeGenerator)