-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsl_newer_college.yaml
70 lines (64 loc) · 1.65 KB
/
sl_newer_college.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
name: 'sl_newer_college_sample_01_stride_05_beam_64_downsample_05'
tensors:
placeholders:
X:
shape: [64, 128, 24]
Y:
shape: [ 1 ]
hyper_params:
base_depth: 32
classification_loss_weight: 0.01
cross_modal_recon_loss_weight: 1.0
train:
stop_val_loss_decrease: -0.05
first_stage_epochs: 15
epochs: 30
val_epoch: 1
save_epoch: 1
batch_size: 32
start_learning_rate: 0.0001
stage2_learning_rate: 0.00001
lr_decay_step: 100000
lr_decay_rate: 0.1
pre_trained_weights: []
continue_training: False
optimizer_var_list: []
devices:
GPU: 1
machine:
save_dir: './results/save/'
log_dir: './results/log/'
data:
num_parallel_reads: 16
inputs:
# Ensure, this key is the same the model.tensor_dict
# Below are to be resized and sliced in pre-process to match the placeholders
X:
modality: 'image'
data_type: 'float32'
nhwc: True
H: 64
W: 128
C: 23
feature_names:
- 'X'
Y:
modality: 'scalar'
data_type: 'float32'
shape: [ 1 ]
# Feature listed below will be random chosen on the fly
feature_names:
- 'Y'
# Below are configs for tfrecords files
compression_type: '' # no compression
suffix: 'tfrecord'
tfrecords_train_dirs:
- "Replace this with where you saved the training tfrecords"
tfrecords_test_dirs:
- "Replace this with where you saved the validation tfrecords"
inference:
included_tensor_names:
- 'sl_newer_college_sample_01_stride_05_beam_64_downsample_05'
- 'classifier'
freeze:
output_node_name: 'sl_newer_college_sample_01_stride_05_beam_64_downsample_05/prediction_from_classifier'