-
Notifications
You must be signed in to change notification settings - Fork 222
/
SPIRVToOCL20.cpp
300 lines (264 loc) · 11.5 KB
/
SPIRVToOCL20.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
//===- SPIRVToOCL20.cpp - Transform SPIR-V builtins to OCL20 builtins------===//
//
// The LLVM/SPIRV Translator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
// Copyright (c) 2014 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal with the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimers.
// Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimers in the documentation
// and/or other materials provided with the distribution.
// Neither the names of Advanced Micro Devices, Inc., nor the names of its
// contributors may be used to endorse or promote products derived from this
// Software without specific prior written permission.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH
// THE SOFTWARE.
//
//===----------------------------------------------------------------------===//
//
// This file implements transform SPIR-V builtins to OCL 2.0 builtins.
//
//===----------------------------------------------------------------------===//
#include "OCLUtil.h"
#include "SPIRVToOCL.h"
#include "llvm/IR/Verifier.h"
#define DEBUG_TYPE "spvtocl20"
namespace SPIRV {
char SPIRVToOCL20Legacy::ID = 0;
bool SPIRVToOCL20Legacy::runOnModule(Module &Module) {
return SPIRVToOCL20Base::runSPIRVToOCL(Module);
}
bool SPIRVToOCL20Base::runSPIRVToOCL(Module &Module) {
M = &Module;
Ctx = &M->getContext();
// Lower builtin variables to builtin calls first.
lowerBuiltinVariablesToCalls(M);
translateOpaqueTypes();
visit(*M);
postProcessBuiltinsReturningStruct(M);
postProcessBuiltinsWithArrayArguments(M);
eraseUselessFunctions(&Module);
LLVM_DEBUG(dbgs() << "After SPIRVToOCL20:\n" << *M);
std::string Err;
raw_string_ostream ErrorOS(Err);
if (verifyModule(*M, &ErrorOS)) {
LLVM_DEBUG(errs() << "Fails to verify module: " << ErrorOS.str());
}
return true;
}
void SPIRVToOCL20Base::visitCallSPIRVMemoryBarrier(CallInst *CI) {
Value *MemScope =
SPIRV::transSPIRVMemoryScopeIntoOCLMemoryScope(CI->getArgOperand(0), CI);
Value *MemFenceFlags = SPIRV::transSPIRVMemorySemanticsIntoOCLMemFenceFlags(
CI->getArgOperand(1), CI);
Value *MemOrder = SPIRV::transSPIRVMemorySemanticsIntoOCLMemoryOrder(
CI->getArgOperand(1), CI);
mutateCallInst(CI, kOCLBuiltinName::AtomicWorkItemFence)
.setArgs({MemFenceFlags, MemOrder, MemScope});
}
void SPIRVToOCL20Base::visitCallSPIRVControlBarrier(CallInst *CI) {
auto GetArg = [=](unsigned I) {
return cast<ConstantInt>(CI->getArgOperand(I))->getZExtValue();
};
auto ExecScope = static_cast<Scope>(GetArg(0));
Value *MemScope =
SPIRV::transSPIRVMemoryScopeIntoOCLMemoryScope(CI->getArgOperand(1), CI);
Value *MemFenceFlags = SPIRV::transSPIRVMemorySemanticsIntoOCLMemFenceFlags(
CI->getArgOperand(2), CI);
mutateCallInst(CI, ExecScope == ScopeWorkgroup
? kOCLBuiltinName::WorkGroupBarrier
: kOCLBuiltinName::SubGroupBarrier)
.setArgs({MemFenceFlags, MemScope});
}
void SPIRVToOCL20Base::visitCallSPIRVSplitBarrierINTEL(CallInst *CI, Op OC) {
Value *MemScope =
SPIRV::transSPIRVMemoryScopeIntoOCLMemoryScope(CI->getArgOperand(1), CI);
Value *MemFenceFlags = SPIRV::transSPIRVMemorySemanticsIntoOCLMemFenceFlags(
CI->getArgOperand(2), CI);
mutateCallInst(CI, OCLSPIRVBuiltinMap::rmap(OC))
.setArgs({MemFenceFlags, MemScope});
}
std::string SPIRVToOCL20Base::mapFPAtomicName(Op OC) {
assert(isFPAtomicOpCode(OC) && "Not intended to handle other opcodes than "
"AtomicF{Add/Min/Max}EXT!");
switch (OC) {
case OpAtomicFAddEXT:
return "atomic_fetch_add_explicit";
case OpAtomicFMinEXT:
return "atomic_fetch_min_explicit";
case OpAtomicFMaxEXT:
return "atomic_fetch_max_explicit";
default:
llvm_unreachable("Unsupported opcode!");
}
}
void SPIRVToOCL20Base::mutateAtomicName(CallInst *CI, Op OC) {
// Map fp atomic instructions to regular OpenCL built-ins.
mutateCallInst(CI, isFPAtomicOpCode(OC) ? mapFPAtomicName(OC)
: OCLSPIRVBuiltinMap::rmap(OC));
}
void SPIRVToOCL20Base::visitCallSPIRVAtomicBuiltin(CallInst *CI, Op OC) {
CallInst *CIG = mutateCommonAtomicArguments(CI, OC);
switch (OC) {
case OpAtomicIIncrement:
case OpAtomicIDecrement:
visitCallSPIRVAtomicIncDec(CIG, OC);
break;
case OpAtomicCompareExchange:
case OpAtomicCompareExchangeWeak:
visitCallSPIRVAtomicCmpExchg(CIG);
break;
default:
mutateAtomicName(CIG, OC);
}
}
void SPIRVToOCL20Base::visitCallSPIRVAtomicIncDec(CallInst *CI, Op OC) {
// Since OpenCL 2.0 doesn't have atomic_inc and atomic_dec builtins, we
// translate these instructions to atomic_fetch_add_explicit and
// atomic_fetch_sub_explicit OpenCL 2.0 builtins with "operand" argument = 1.
auto Name = OCLSPIRVBuiltinMap::rmap(OC == OpAtomicIIncrement ? OpAtomicIAdd
: OpAtomicISub);
Type *ValueTy = CI->getType();
assert(ValueTy->isIntegerTy());
mutateCallInst(CI, Name).insertArg(1, ConstantInt::get(ValueTy, 1));
}
CallInst *SPIRVToOCL20Base::mutateCommonAtomicArguments(CallInst *CI, Op OC) {
std::string Name;
// Map fp atomic instructions to regular OpenCL built-ins.
if (isFPAtomicOpCode(OC))
Name = mapFPAtomicName(OC);
else
Name = OCLSPIRVBuiltinMap::rmap(OC);
auto Ptr = findFirstPtr(CI->args());
auto NumOrder = getSPIRVAtomicBuiltinNumMemoryOrderArgs(OC);
auto ScopeIdx = Ptr + 1;
auto OrderIdx = Ptr + 2;
auto Mutator = mutateCallInst(CI, Name);
Mutator.mapArgs([=](IRBuilder<> &Builder, Value *PtrArg, Type *PtrArgTy) {
if (auto *TypedPtrTy = dyn_cast<TypedPointerType>(PtrArgTy)) {
if (TypedPtrTy->getAddressSpace() != SPIRAS_Generic) {
Type *ElementTy = TypedPtrTy->getElementType();
Type *FixedPtr = PointerType::get(ElementTy, SPIRAS_Generic);
PtrArg = Builder.CreateAddrSpaceCast(PtrArg, FixedPtr,
PtrArg->getName() + ".as");
PtrArgTy = TypedPointerType::get(ElementTy, SPIRAS_Generic);
}
}
return std::make_pair(PtrArg, PtrArgTy);
});
Mutator.mapArg(ScopeIdx, [=](Value *Arg) {
return SPIRV::transSPIRVMemoryScopeIntoOCLMemoryScope(Arg, CI);
});
for (size_t I = 0; I < NumOrder; ++I) {
Mutator.mapArg(OrderIdx + I, [=](Value *Arg) {
return SPIRV::transSPIRVMemorySemanticsIntoOCLMemoryOrder(Arg, CI);
});
}
Mutator.moveArg(Mutator.arg_size() - 1, ScopeIdx + 1);
Mutator.moveArg(ScopeIdx, Mutator.arg_size() - 1);
return cast<CallInst>(Mutator.getMutated());
}
void SPIRVToOCL20Base::visitCallSPIRVAtomicCmpExchg(CallInst *CI) {
Type *MemTy = CI->getType();
// OpAtomicCompareExchange[Weak] semantics is different from
// atomic_compare_exchange_strong semantics as well as arguments order.
// OCL built-ins returns boolean value and stores a new/original
// value by pointer passed as 2nd argument (aka expected) while SPIR-V
// instructions returns this new/original value as a resulting value.
AllocaInst *PExpected = new AllocaInst(
MemTy, 0, "expected",
CI->getParent()->getParent()->getEntryBlock().getFirstInsertionPt());
PExpected->setAlignment(Align(MemTy->getScalarSizeInBits() / 8));
// Tail call implies that the callee doesn't access alloca from the caller.
// The newly created alloca invalidates the tail call semantics.
CI->setTailCall(false);
// OpAtomicCompareExchangeWeak is not "weak" at all, but instead has the same
// semantics as OpAtomicCompareExchange.
mutateCallInst(CI, "atomic_compare_exchange_strong_explicit")
.mapArg(1,
[=](IRBuilder<> &Builder, Value *Expected) {
Builder.CreateStore(Expected, PExpected);
unsigned AddrSpc = SPIRAS_Generic;
Type *PtrTyAS = PointerType::get(PExpected->getType(), AddrSpc);
Value *V = Builder.CreateAddrSpaceCast(
PExpected, PtrTyAS, PExpected->getName() + ".as");
return std::make_pair(V, TypedPointerType::get(MemTy, AddrSpc));
})
.moveArg(4, 2)
.changeReturnType(Type::getInt1Ty(*Ctx), [=](IRBuilder<> &Builder,
CallInst *NewCI) {
// OCL built-ins atomic_compare_exchange_[strong|weak] return boolean
// value. So, to obtain the same value as SPIR-V instruction is
// returning it has to be loaded from the memory where 'expected'
// value is stored. This memory must contain the needed value after a
// call to OCL built-in is completed.
return Builder.CreateLoad(MemTy, NewCI->getArgOperand(1), "original");
});
}
void SPIRVToOCL20Base::visitCallSPIRVEnqueueKernel(CallInst *CI, Op OC) {
bool HasVaargs = CI->arg_size() > 10;
bool HasEvents = true;
Value *EventRet = CI->getArgOperand(5);
if (isa<ConstantPointerNull>(EventRet)) {
Value *NumEvents = CI->getArgOperand(3);
if (isa<ConstantInt>(NumEvents)) {
ConstantInt *NE = cast<ConstantInt>(NumEvents);
HasEvents = NE->getZExtValue() != 0;
}
}
StringRef FName = "";
if (!HasVaargs && !HasEvents)
FName = "__enqueue_kernel_basic";
else if (!HasVaargs && HasEvents)
FName = "__enqueue_kernel_basic_events";
else if (HasVaargs && !HasEvents)
FName = "__enqueue_kernel_varargs";
else
FName = "__enqueue_kernel_events_varargs";
auto Mutator = mutateCallInst(CI, FName.str());
Mutator.mapArg(6, [=](IRBuilder<> &Builder, Value *Invoke) {
Value *Replace = CastInst::CreatePointerBitCastOrAddrSpaceCast(
Invoke, Builder.getPtrTy(SPIRAS_Generic), "", CI->getIterator());
return std::make_pair(
Replace, TypedPointerType::get(Builder.getInt8Ty(), SPIRAS_Generic));
});
if (!HasVaargs) {
// Remove arguments at indices 8 (Param Size), 9 (Param Align)
Mutator.removeArgs(8, 2);
} else {
// GEP to array of sizes of local arguments
Mutator.moveArg(10, 8);
Type *Int32Ty = Type::getInt32Ty(*Ctx);
size_t NumLocalArgs = Mutator.arg_size() - 10;
Mutator.insertArg(8, ConstantInt::get(Int32Ty, NumLocalArgs));
// Mark all SPIRV-specific arguments as removed
Mutator.removeArgs(10, Mutator.arg_size() - 10);
}
if (!HasEvents) {
// Remove arguments at indices 3 (Num Events), 4 (Wait Events), 5 (Ret
// Event).
Mutator.removeArgs(3, 3);
}
}
} // namespace SPIRV
INITIALIZE_PASS(SPIRVToOCL20Legacy, "spvtoocl20",
"Translate SPIR-V builtins to OCL 2.0 builtins", false, false)
ModulePass *llvm::createSPIRVToOCL20Legacy() {
return new SPIRVToOCL20Legacy();
}