-
Notifications
You must be signed in to change notification settings - Fork 222
/
SPIRVBuiltinHelper.cpp
390 lines (354 loc) · 16.1 KB
/
SPIRVBuiltinHelper.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
//===- SPIRVBuiltinHelper.cpp - Helpers for managing calls to builtins ----===//
//
// The LLVM/SPIR-V Translator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
// Copyright (c) 2022 The Khronos Group Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal with the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimers.
// Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimers in the documentation
// and/or other materials provided with the distribution.
// Neither the names of The Khronos Group, nor the names of its
// contributors may be used to endorse or promote products derived from this
// Software without specific prior written permission.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH
// THE SOFTWARE.
//
//===----------------------------------------------------------------------===//
//
// This file implements helper functions for adding calls to OpenCL or SPIR-V
// builtin functions, or for rewriting calls to one into calls to the other.
//
//===----------------------------------------------------------------------===//
#include "SPIRVBuiltinHelper.h"
#include "OCLUtil.h"
#include "SPIRVInternal.h"
using namespace llvm;
using namespace SPIRV;
static std::unique_ptr<BuiltinFuncMangleInfo> makeMangler(CallBase *CB,
ManglingRules Rules) {
switch (Rules) {
case ManglingRules::None:
return nullptr;
case ManglingRules::SPIRV:
return std::make_unique<BuiltinFuncMangleInfo>();
case ManglingRules::OpenCL:
return OCLUtil::makeMangler(*CB->getCalledFunction());
}
llvm_unreachable("Unknown mangling rules to make a name mangler");
}
BuiltinCallMutator::BuiltinCallMutator(
CallInst *CI, std::string FuncName, ManglingRules Rules,
std::function<std::string(StringRef)> NameMapFn)
: CI(CI), FuncName(FuncName),
Attrs(CI->getCalledFunction()->getAttributes()),
CallAttrs(CI->getAttributes()), ReturnTy(CI->getType()), Args(CI->args()),
Rules(Rules), Builder(CI) {
bool DidDemangle = getParameterTypes(CI->getCalledFunction(), PointerTypes,
std::move(NameMapFn));
if (!DidDemangle) {
// TODO: PipeBlocking.ll causes demangling failures.
// assert(isNonMangledOCLBuiltin(CI->getCalledFunction()->getName()) &&
// "SPIR-V builtin functions should be mangled");
for (Value *Arg : Args)
PointerTypes.push_back(Arg->getType());
}
}
BuiltinCallMutator::BuiltinCallMutator(BuiltinCallMutator &&Other)
: CI(Other.CI), FuncName(std::move(Other.FuncName)),
MutateRet(std::move(Other.MutateRet)), Attrs(Other.Attrs),
CallAttrs(Other.CallAttrs), ReturnTy(Other.ReturnTy),
Args(std::move(Other.Args)), PointerTypes(std::move(Other.PointerTypes)),
Rules(std::move(Other.Rules)), Builder(CI) {
// Clear the other's CI instance so that it knows not to construct the actual
// call.
Other.CI = nullptr;
}
Value *BuiltinCallMutator::doConversion() {
assert(CI && "Need to have a call instruction to do the conversion");
auto Mangler = makeMangler(CI, Rules);
for (unsigned I = 0, E = std::min(Args.size(), PointerTypes.size()); I < E;
I++) {
Mangler->getTypeMangleInfo(I).PointerTy =
dyn_cast<TypedPointerType>(PointerTypes[I]);
}
assert(Attrs.getNumAttrSets() <= Args.size() + 2 && "Too many attributes?");
// Sanitize the return type, in case it's a TypedPointerType.
if (auto *TPT = dyn_cast<TypedPointerType>(ReturnTy))
ReturnTy = PointerType::get(TPT->getElementType(), TPT->getAddressSpace());
CallInst *NewCall =
Builder.Insert(addCallInst(CI->getModule(), FuncName, ReturnTy, Args,
&Attrs, nullptr, Mangler.get()));
NewCall->copyMetadata(*CI);
NewCall->setAttributes(CallAttrs);
NewCall->setTailCall(CI->isTailCall());
if (isa<FPMathOperator>(CI))
NewCall->setFastMathFlags(CI->getFastMathFlags());
if (CI->hasFnAttr("fpbuiltin-max-error")) {
auto Attr = CI->getFnAttr("fpbuiltin-max-error");
NewCall->addFnAttr(Attr);
}
Value *Result = MutateRet ? MutateRet(Builder, NewCall) : NewCall;
Result->takeName(CI);
if (!CI->getType()->isVoidTy())
CI->replaceAllUsesWith(Result);
CI->dropAllReferences();
CI->eraseFromParent();
CI = nullptr;
return Result;
}
BuiltinCallMutator &BuiltinCallMutator::setArgs(ArrayRef<Value *> NewArgs) {
// Retain only the function attributes, not any parameter attributes.
Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttrs(),
Attrs.getRetAttrs(), {});
CallAttrs = AttributeList::get(CI->getContext(), CallAttrs.getFnAttrs(),
CallAttrs.getRetAttrs(), {});
Args.clear();
PointerTypes.clear();
for (Value *Arg : NewArgs) {
assert(!Arg->getType()->isPointerTy() &&
"Cannot use this signature with pointer types");
Args.push_back(Arg);
PointerTypes.push_back(Arg->getType());
}
return *this;
}
// This is a helper method to handle splicing of the attribute lists, as
// llvm::AttributeList doesn't have any helper methods for this sort of design.
// (It's designed to be manually built-up, not adjusted to add/remove
// arguments on the fly).
static void moveAttributes(LLVMContext &Ctx, AttributeList &Attrs,
unsigned Start, unsigned Len, unsigned Dest) {
SmallVector<std::pair<unsigned, AttributeSet>, 6> NewAttrs;
for (unsigned Index : Attrs.indexes()) {
AttributeSet AttrSet = Attrs.getAttributes(Index);
if (!AttrSet.hasAttributes())
continue;
// If the attribute is a parameter index, check to see how its index should
// be adjusted.
if (Index > AttributeList::FirstArgIndex) {
unsigned ParamIndex = Index - AttributeList::FirstArgIndex;
if (ParamIndex >= Start && ParamIndex < Start + Len)
// A parameter in this range needs to have its index adjusted to its
// destination location.
Index += Dest - Start;
else if (ParamIndex >= Dest && ParamIndex < Dest + Len)
// This parameter will be overwritten by one of the moved parameters, so
// omit it entirely.
continue;
}
// The array is usually going to be sorted, but because of the above
// adjustment, we might end up out of order. This logic ensures that the
// array always remains in sorted order.
std::pair<unsigned, AttributeSet> ToInsert(Index, AttrSet);
NewAttrs.insert(llvm::lower_bound(NewAttrs, ToInsert, llvm::less_first()),
ToInsert);
}
Attrs = AttributeList::get(Ctx, NewAttrs);
}
BuiltinCallMutator &BuiltinCallMutator::insertArg(unsigned Index,
ValueTypePair Arg) {
Args.insert(Args.begin() + Index, Arg.first);
PointerTypes.insert(PointerTypes.begin() + Index, Arg.second);
moveAttributes(CI->getContext(), Attrs, Index, Args.size() - Index,
Index + 1);
moveAttributes(CI->getContext(), CallAttrs, Index, Args.size() - Index,
Index + 1);
return *this;
}
BuiltinCallMutator &BuiltinCallMutator::replaceArg(unsigned Index,
ValueTypePair Arg) {
Args[Index] = Arg.first;
PointerTypes[Index] = Arg.second;
Attrs = Attrs.removeParamAttributes(CI->getContext(), Index);
CallAttrs = CallAttrs.removeParamAttributes(CI->getContext(), Index);
return *this;
}
BuiltinCallMutator &BuiltinCallMutator::removeArg(unsigned Index) {
// If the argument being dropped is the last one, there is nothing to move, so
// just remove the attributes.
auto &Ctx = CI->getContext();
if (Index == Args.size() - 1) {
Attrs = Attrs.removeParamAttributes(Ctx, Index);
CallAttrs = CallAttrs.removeParamAttributes(Ctx, Index);
} else {
moveAttributes(Ctx, Attrs, Index + 1, Args.size() - Index - 1, Index);
moveAttributes(Ctx, CallAttrs, Index + 1, Args.size() - Index - 1, Index);
}
Args.erase(Args.begin() + Index);
PointerTypes.erase(PointerTypes.begin() + Index);
return *this;
}
BuiltinCallMutator &
BuiltinCallMutator::changeReturnType(Type *NewReturnTy,
MutateRetFuncTy MutateFunc) {
ReturnTy = NewReturnTy;
MutateRet = std::move(MutateFunc);
return *this;
}
BuiltinCallMutator BuiltinCallHelper::mutateCallInst(CallInst *CI,
spv::Op Opcode) {
return mutateCallInst(CI, getSPIRVFuncName(Opcode));
}
BuiltinCallMutator BuiltinCallHelper::mutateCallInst(CallInst *CI,
std::string FuncName) {
assert(CI->getCalledFunction() && "Can only mutate direct function calls.");
return BuiltinCallMutator(CI, std::move(FuncName), Rules, NameMapFn);
}
Value *BuiltinCallHelper::addSPIRVCall(IRBuilder<> &Builder, spv::Op Opcode,
Type *ReturnTy, ArrayRef<Value *> Args,
ArrayRef<Type *> ArgTys,
const Twine &Name) {
// Sanitize the return type, in case it's a TypedPointerType.
if (auto *TPT = dyn_cast<TypedPointerType>(ReturnTy))
ReturnTy = PointerType::get(TPT->getElementType(), TPT->getAddressSpace());
// Copy the types into the mangling info.
BuiltinFuncMangleInfo BtnInfo;
for (unsigned I = 0; I < ArgTys.size(); I++) {
if (Args[I]->getType()->isPointerTy())
BtnInfo.getTypeMangleInfo(I).PointerTy = ArgTys[I];
}
// Create the function and the call.
auto *F = getOrCreateFunction(M, ReturnTy, getTypes(Args),
getSPIRVFuncName(Opcode), &BtnInfo);
return Builder.CreateCall(F, Args, ReturnTy->isVoidTy() ? "" : Name);
}
Type *BuiltinCallHelper::adjustImageType(Type *T, StringRef OldImageKind,
StringRef NewImageKind) {
if (auto *TypedPtrTy = dyn_cast<TypedPointerType>(T)) {
Type *StructTy = TypedPtrTy->getElementType();
// Adapt opencl.* struct type names to spirv.* struct type names.
if (isOCLImageType(T)) {
if (OldImageKind != kSPIRVTypeName::Image)
report_fatal_error("Type was not an image type");
auto ImageTypeName = StructTy->getStructName();
auto Desc =
map<SPIRVTypeImageDescriptor>(getImageBaseTypeName(ImageTypeName));
spv::AccessQualifier Acc = AccessQualifierReadOnly;
if (hasAccessQualifiedName(ImageTypeName))
Acc = getAccessQualifier(ImageTypeName);
auto NewImageType = SPIRVOpaqueTypeOpCodeMap::map(NewImageKind.str());
return getSPIRVType(NewImageType, Type::getVoidTy(M->getContext()), Desc,
Acc);
}
// Change type name (e.g., spirv.Image -> spirv.SampledImg) if necessary.
StringRef Postfixes;
if (isSPIRVStructType(StructTy, OldImageKind, &Postfixes))
StructTy = getOrCreateOpaqueStructType(
M, getSPIRVTypeName(NewImageKind, Postfixes));
else {
report_fatal_error("Type did not have expected image kind");
}
return TypedPointerType::get(StructTy, TypedPtrTy->getAddressSpace());
}
if (auto *TargetTy = dyn_cast<TargetExtType>(T)) {
StringRef Name = TargetTy->getName();
if (!Name.consume_front(kSPIRVTypeName::PrefixAndDelim) ||
Name != OldImageKind)
report_fatal_error("Type did not have expected image kind");
return TargetExtType::get(
TargetTy->getContext(),
(Twine(kSPIRVTypeName::PrefixAndDelim) + NewImageKind).str(),
TargetTy->type_params(), TargetTy->int_params());
}
report_fatal_error("Expected type to be a SPIRV image type");
}
Type *BuiltinCallHelper::getSPIRVType(spv::Op TypeOpcode, bool UseRealType) {
return getSPIRVType(TypeOpcode, "", {}, UseRealType);
}
Type *BuiltinCallHelper::getSPIRVType(spv::Op TypeOpcode,
spv::AccessQualifier Access,
bool UseRealType) {
return getSPIRVType(TypeOpcode, "", {(unsigned)Access}, UseRealType);
}
Type *BuiltinCallHelper::getSPIRVType(
spv::Op TypeOpcode, Type *InnerType, SPIRVTypeImageDescriptor Desc,
std::optional<spv::AccessQualifier> Access, bool UseRealType) {
return getSPIRVType(TypeOpcode, convertTypeToPostfix(InnerType),
{(unsigned)Desc.Dim, (unsigned)Desc.Depth,
(unsigned)Desc.Arrayed, (unsigned)Desc.MS,
(unsigned)Desc.Sampled, (unsigned)Desc.Format,
(unsigned)Access.value_or(AccessQualifierReadOnly)},
UseRealType);
}
Type *BuiltinCallHelper::getSPIRVType(spv::Op TypeOpcode,
StringRef InnerTypeName,
ArrayRef<unsigned> Parameters,
bool UseRealType) {
if (UseTargetTypes) {
std::string BaseName = (Twine(kSPIRVTypeName::PrefixAndDelim) +
SPIRVOpaqueTypeOpCodeMap::rmap(TypeOpcode))
.str();
SmallVector<Type *, 1> TypeParams;
if (!InnerTypeName.empty()) {
TypeParams.push_back(getLLVMTypeForSPIRVImageSampledTypePostfix(
InnerTypeName, M->getContext()));
}
return TargetExtType::get(M->getContext(), BaseName, TypeParams,
Parameters);
}
std::string FullName;
{
raw_string_ostream OS(FullName);
OS << kSPIRVTypeName::PrefixAndDelim
<< SPIRVOpaqueTypeOpCodeMap::rmap(TypeOpcode);
if (!InnerTypeName.empty() || !Parameters.empty())
OS << kSPIRVTypeName::Delimiter;
if (!InnerTypeName.empty())
OS << kSPIRVTypeName::PostfixDelim << InnerTypeName;
for (unsigned IntParam : Parameters)
OS << kSPIRVTypeName::PostfixDelim << IntParam;
}
auto *STy = StructType::getTypeByName(M->getContext(), FullName);
if (!STy)
STy = StructType::create(M->getContext(), FullName);
unsigned AddrSpace = getOCLOpaqueTypeAddrSpace(TypeOpcode);
return UseRealType ? (Type *)PointerType::get(STy, AddrSpace)
: TypedPointerType::get(STy, AddrSpace);
}
void BuiltinCallHelper::initialize(llvm::Module &M) {
this->M = &M;
// We want to use pointers-to-opaque-structs for the special types if:
// * We are translating from SPIR-V to LLVM IR (which means we are using
// OpenCL mangling rules)
// * There are %opencl.* or %spirv.* struct type names already present.
UseTargetTypes = Rules != ManglingRules::OpenCL;
for (StructType *Ty : M.getIdentifiedStructTypes()) {
if (!Ty->isOpaque() || !Ty->hasName())
continue;
StringRef Name = Ty->getName();
if (Name.starts_with("opencl.") || Name.starts_with("spirv.")) {
UseTargetTypes = false;
}
}
}
BuiltinCallMutator::ValueTypePair
BuiltinCallHelper::getCallValue(CallInst *CI, unsigned ArgNo) {
Function *CalledFunc = CI->getCalledFunction();
assert(CalledFunc && "Unexpected indirect call");
if (CalledFunc != CachedFunc) {
CachedFunc = CalledFunc;
[[maybe_unused]] bool DidDemangle =
getParameterTypes(CalledFunc, CachedParameterTypes, NameMapFn);
assert(DidDemangle && "Expected SPIR-V builtins to be properly mangled");
}
Value *ParamValue = CI->getArgOperand(ArgNo);
Type *ParamType = CachedParameterTypes[ArgNo];
return {ParamValue, ParamType};
}