forked from ae-foster/dad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
location_finding.py
404 lines (352 loc) · 14.7 KB
/
location_finding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import argparse
import numpy as np
import pandas as pd
import torch
from torch import nn
import pyro
import pyro.distributions as dist
from pyro.infer.util import torch_item
from tqdm import trange
import mlflow
import mlflow.pytorch
from neural.modules import (
SetEquivariantDesignNetwork,
BatchDesignBaseline,
RandomDesignBaseline,
rmv,
)
from oed.primitives import observation_sample, latent_sample, compute_design
from experiment_tools.pyro_tools import auto_seed
from oed.design import OED
from contrastive.mi import PriorContrastiveEstimation
class EncoderNetwork(nn.Module):
"""Encoder network for location finding example"""
def __init__(self, design_dim, osbervation_dim, hidden_dim, encoding_dim):
super().__init__()
self.encoding_dim = encoding_dim
self.design_dim_flat = design_dim[0] * design_dim[1]
input_dim = self.design_dim_flat + osbervation_dim
self.linear1 = nn.Linear(input_dim, hidden_dim)
self.output_layer = nn.Linear(hidden_dim, encoding_dim)
self.relu = nn.ReLU()
self.softplus = nn.Softplus()
def forward(self, xi, y, **kwargs):
xi = xi.flatten(-2)
inputs = torch.cat([xi, y], dim=-1)
x = self.linear1(inputs)
x = self.relu(x)
x = self.output_layer(x)
return x
class EmitterNetwork(nn.Module):
"""Emitter network for location finding example"""
def __init__(self, encoding_dim, design_dim):
super().__init__()
self.design_dim = design_dim
self.design_dim_flat = design_dim[0] * design_dim[1]
self.linear = nn.Linear(encoding_dim, self.design_dim_flat)
def forward(self, r):
xi_flat = self.linear(r)
return xi_flat.reshape(xi_flat.shape[:-1] + self.design_dim)
class HiddenObjects(nn.Module):
"""Location finding example"""
def __init__(
self,
design_net,
base_signal=0.1, # G-map hyperparam
max_signal=1e-4, # G-map hyperparam
theta_loc=None, # prior on theta mean hyperparam
theta_covmat=None, # prior on theta covariance hyperparam
noise_scale=None, # this is the scale of the noise term
p=1, # physical dimension
K=1, # number of sources
T=2, # number of experiments
):
super().__init__()
self.design_net = design_net
self.base_signal = base_signal
self.max_signal = max_signal
# Set prior:
self.theta_loc = theta_loc if theta_loc is not None else torch.zeros((K, p))
self.theta_covmat = theta_covmat if theta_covmat is not None else torch.eye(p)
self.theta_prior = dist.MultivariateNormal(
self.theta_loc, self.theta_covmat
).to_event(1)
# Observations noise scale:
self.noise_scale = noise_scale if noise_scale is not None else torch.tensor(1.0)
self.n = 1 # batch=1
self.p = p # dimension of theta (location finding example will be 1, 2 or 3).
self.K = K # number of sources
self.T = T # number of experiments
def forward_map(self, xi, theta):
"""Defines the forward map for the hidden object example
y = G(xi, theta) + Noise.
"""
# two norm squared
sq_two_norm = (xi - theta).pow(2).sum(axis=-1)
sq_two_norm_inverse = (self.max_signal + sq_two_norm).pow(-1)
# sum over the K sources, add base signal and take log.
mean_y = torch.log(self.base_signal + sq_two_norm_inverse.sum(-1, keepdim=True))
return mean_y
def model(self):
if hasattr(self.design_net, "parameters"):
pyro.module("design_net", self.design_net)
########################################################################
# Sample latent variables theta
########################################################################
theta = latent_sample("theta", self.theta_prior)
y_outcomes = []
xi_designs = []
# T-steps experiment
for t in range(self.T):
####################################################################
# Get a design xi; shape is [num-outer-samples x 1 x 1]
####################################################################
xi = compute_design(
f"xi{t + 1}", self.design_net.lazy(*zip(xi_designs, y_outcomes))
)
####################################################################
# Sample y at xi; shape is [num-outer-samples x 1]
####################################################################
mean = self.forward_map(xi, theta)
sd = self.noise_scale
y = observation_sample(f"y{t + 1}", dist.Normal(mean, sd).to_event(1))
y_outcomes.append(y)
xi_designs.append(xi)
return y_outcomes
def forward(self, theta=None):
"""Run the policy"""
self.design_net.eval()
if theta is not None:
model = pyro.condition(self.model, data={"theta": theta})
else:
model = self.model
designs = []
observations = []
with torch.no_grad():
trace = pyro.poutine.trace(model).get_trace()
for t in range(self.T):
xi = trace.nodes[f"xi{t + 1}"]["value"]
designs.append(xi)
y = trace.nodes[f"y{t + 1}"]["value"]
observations.append(y)
return torch.cat(designs).unsqueeze(1), torch.cat(observations).unsqueeze(1)
def eval(self, n_trace=3, theta=None, verbose=True):
"""run the policy, print output and return in a pandas df"""
self.design_net.eval()
if theta is not None:
model = pyro.condition(self.model, data={"theta": theta})
else:
model = self.model
output = []
true_thetas = []
with torch.no_grad():
for i in range(n_trace):
print("\nExample run {}".format(i + 1))
trace = pyro.poutine.trace(model).get_trace()
true_theta = trace.nodes["theta"]["value"].cpu()
if verbose:
print(f"*True Theta: {true_theta}*")
run_xis = []
run_ys = []
# Print optimal designs, observations for given theta
for t in range(self.T):
xi = trace.nodes[f"xi{t + 1}"]["value"].cpu().reshape(-1)
run_xis.append(xi)
y = trace.nodes[f"y{t + 1}"]["value"].cpu().item()
run_ys.append(y)
if verbose:
print(f"xi{t + 1}: {xi}")
print(f" y{t + 1}: {y}")
run_df = pd.DataFrame(torch.stack(run_xis).numpy())
run_df.columns = [f"xi_{i}" for i in range(self.p)]
run_df["observations"] = run_ys
run_df["order"] = list(range(1, self.T + 1))
run_df["run_id"] = i + 1
output.append(run_df)
true_thetas.append(true_theta.numpy())
print(pd.concat(output))
return pd.concat(output), true_thetas
def single_run(
seed,
num_steps,
num_inner_samples, # L in denom
num_outer_samples, # N to estimate outer E
lr, # learning rate of adam optim
gamma, # scheduler for adam optim
p, # number of physical dim
K, # number of sources
T, # number of experiments
noise_scale,
base_signal,
max_signal,
device,
hidden_dim,
encoding_dim,
mlflow_experiment_name,
design_network_type, # "dad" or "static" or "random"
adam_betas_wd=[0.9, 0.999, 0], # these are the defaults
):
pyro.clear_param_store()
seed = auto_seed(seed)
*adam_betas, adam_weight_decay = adam_betas_wd
### Set up model ###
n = 1 # batch dim
encoder = EncoderNetwork((n, p), n, hidden_dim, encoding_dim)
emitter = EmitterNetwork(encoding_dim, (n, p))
# Design net: takes pairs [design, observation] as input
if design_network_type == "static":
design_net = BatchDesignBaseline(T, (n, p)).to(device)
elif design_network_type == "random":
design_net = RandomDesignBaseline(T, (n, p)).to(device)
num_steps = 0 # no gradient steps needed
elif design_network_type == "dad":
design_net = SetEquivariantDesignNetwork(
encoder, emitter, empty_value=torch.ones(n, p) * 0.01
).to(device)
else:
raise ValueError(f"design_network_type={design_network_type} not supported.")
### Set up Mlflow logging ### ------------------------------------------------------
mlflow.set_experiment(mlflow_experiment_name)
## Reproducibility
mlflow.log_param("seed", seed)
## Model hyperparams
mlflow.log_param("base_signal", base_signal)
mlflow.log_param("max_signal", max_signal)
mlflow.log_param("noise_scale", noise_scale)
mlflow.log_param("num_experiments", T)
mlflow.log_param("num_sources", K)
mlflow.log_param("physical_dim", p)
## Design network hyperparams
mlflow.log_param("design_network_type", design_network_type)
if design_network_type == "dad":
mlflow.log_param("hidden_dim", hidden_dim)
mlflow.log_param("encoding_dim", encoding_dim)
mlflow.log_param("num_inner_samples", num_inner_samples)
mlflow.log_param("num_outer_samples", num_outer_samples)
## Optimiser hyperparams
mlflow.log_param("num_steps", num_steps)
mlflow.log_param("lr", lr)
mlflow.log_param("gamma", gamma)
mlflow.log_param("adam_beta1", adam_betas[0])
mlflow.log_param("adam_beta2", adam_betas[1])
mlflow.log_param("adam_weight_decay", adam_weight_decay)
# ----------------------------------------------------------------------------------
### Prior hyperparams ###
# The prior is K independent * p-variate Normals. For example, if there's 1 source
# (K=1) in 2D (p=2), then we have 1 bivariate Normal.
theta_prior_loc = torch.zeros((K, p), device=device) # mean of the prior
theta_prior_covmat = torch.eye(p, device=device) # covariance of the prior
# noise of the model: the sigma in N(G(theta, xi), sigma)
noise_scale_tensor = noise_scale * torch.tensor(
1.0, dtype=torch.float32, device=device
)
# fix the base and the max signal in the G-map
ho_model = HiddenObjects(
design_net=design_net,
base_signal=base_signal,
max_signal=max_signal,
theta_loc=theta_prior_loc,
theta_covmat=theta_prior_covmat,
noise_scale=noise_scale_tensor,
p=p,
K=K,
T=T,
)
### Set-up optimiser ###
optimizer = torch.optim.Adam
# Annealed LR. Set gamma=1 if no annealing required
scheduler = pyro.optim.ExponentialLR(
{
"optimizer": optimizer,
"optim_args": {
"lr": lr,
"betas": adam_betas,
"weight_decay": adam_weight_decay,
},
"gamma": gamma,
}
)
### Set-up loss ###
pce_loss = PriorContrastiveEstimation(num_outer_samples, num_inner_samples)
oed = OED(ho_model.model, scheduler, pce_loss)
### Optimise ###
loss_history = []
num_steps_range = trange(0, num_steps, desc="Loss: 0.000 ")
for i in num_steps_range:
loss = oed.step()
loss = torch_item(loss)
loss_history.append(loss)
# Log every 50 losses -> too slow (and unnecessary to log everything)
if i % 50 == 0:
num_steps_range.set_description("Loss: {:.3f} ".format(loss))
loss_eval = oed.evaluate_loss()
mlflow.log_metric("loss", loss_eval)
# Decrease LR at every 1K steps
if i % 1000 == 0:
scheduler.step()
# log some basic metrics: %decrease in loss over the entire run
if len(loss_history) == 0:
# this happens when we have random designs - there are no grad updates
loss = torch_item(pce_loss.differentiable_loss(ho_model.model))
mlflow.log_metric("loss", loss)
mlflow.log_metric("loss_diff50", 0)
mlflow.log_metric("loss_av50", loss)
else:
loss_diff50 = np.mean(loss_history[-51:-1]) / np.mean(loss_history[0:50]) - 1
mlflow.log_metric("loss_diff50", loss_diff50)
loss_av50 = np.mean(loss_history[-51:-1])
mlflow.log_metric("loss_av50", loss_av50)
ho_model.eval()
# Store the results dict as an artifact
print("Storing model to MlFlow... ", end="")
mlflow.pytorch.log_model(ho_model.cpu(), "model")
ml_info = mlflow.active_run().info
model_loc = f"mlruns/{ml_info.experiment_id}/{ml_info.run_id}/artifacts/model"
print(f"Model sotred in {model_loc}. Done.")
print(f"The experiment-id of this run is {ml_info.experiment_id}")
return ho_model
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Deep Adaptive Design example: Hidden Object Detection."
)
parser.add_argument("--seed", default=-1, type=int)
parser.add_argument("--num-steps", default=500, type=int)
parser.add_argument("--num-inner-samples", default=100, type=int)
parser.add_argument("--num-outer-samples", default=200, type=int)
parser.add_argument("--lr", default=0.0001, type=float)
parser.add_argument("--gamma", default=0.95, type=float)
parser.add_argument("-p", default=2, type=int)
parser.add_argument("--num-experiments", default=5, type=int) # == T
parser.add_argument("--num-sources", default=2, type=int) # == K
parser.add_argument("--noise-scale", default=0.5, type=float)
parser.add_argument("--base-signal", default=0.1, type=float)
parser.add_argument("--max-signal", default=1e-4, type=float)
parser.add_argument("--device", default="cpu", type=str)
parser.add_argument("--hidden-dim", default=128, type=int)
parser.add_argument("--encoding-dim", default=8, type=int)
parser.add_argument("--design-network-type", default="dad", type=str)
parser.add_argument("--adam-betas-wd", nargs="+", default=[0.8, 0.998, 0])
parser.add_argument(
"--mlflow-experiment-name", default="locfin_camera_version", type=str
)
args = parser.parse_args()
single_run(
seed=args.seed,
num_steps=args.num_steps,
num_inner_samples=args.num_inner_samples,
num_outer_samples=args.num_outer_samples,
lr=args.lr,
gamma=args.gamma,
device=args.device,
p=args.p,
K=args.num_sources,
T=args.num_experiments,
noise_scale=args.noise_scale,
base_signal=args.base_signal,
max_signal=args.max_signal,
hidden_dim=args.hidden_dim,
encoding_dim=args.encoding_dim,
mlflow_experiment_name=args.mlflow_experiment_name,
design_network_type=args.design_network_type,
adam_betas_wd=args.adam_betas_wd,
)