-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsystem.py
192 lines (167 loc) · 5.98 KB
/
system.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import math
import os
from dataclasses import dataclass, field
from typing import List, Union
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
import trimesh
from einops import rearrange
from huggingface_hub import hf_hub_download
from omegaconf import OmegaConf
from PIL import Image
from isosurface import MarchingCubeHelper
from utils import (
BaseModule,
ImagePreprocessor,
find_class,
get_spherical_cameras,
scale_tensor,
)
class TSR(BaseModule):
@dataclass
class Config(BaseModule.Config):
cond_image_size: int
image_tokenizer_cls: str
image_tokenizer: dict
tokenizer_cls: str
tokenizer: dict
backbone_cls: str
backbone: dict
post_processor_cls: str
post_processor: dict
decoder_cls: str
decoder: dict
renderer_cls: str
renderer: dict
cfg: Config
@classmethod
def from_pretrained(
cls, config_path: str, weight_path: str
):
cfg = OmegaConf.load(config_path)
OmegaConf.resolve(cfg)
model = cls(cfg)
ckpt = torch.load(weight_path, map_location="cpu")
model.load_state_dict(ckpt)
return model
def configure(self):
self.image_tokenizer = find_class(self.cfg.image_tokenizer_cls)(
self.cfg.image_tokenizer
)
self.tokenizer = find_class(self.cfg.tokenizer_cls)(self.cfg.tokenizer)
self.backbone = find_class(self.cfg.backbone_cls)(self.cfg.backbone)
self.post_processor = find_class(self.cfg.post_processor_cls)(
self.cfg.post_processor
)
self.decoder = find_class(self.cfg.decoder_cls)(self.cfg.decoder)
self.renderer = find_class(self.cfg.renderer_cls)(self.cfg.renderer)
self.image_processor = ImagePreprocessor()
self.isosurface_helper = None
def forward(
self,
image: Union[
PIL.Image.Image,
np.ndarray,
torch.FloatTensor,
List[PIL.Image.Image],
List[np.ndarray],
List[torch.FloatTensor],
],
device: str,
) -> torch.FloatTensor:
rgb_cond = self.image_processor(image, self.cfg.cond_image_size)[:, None].to(
device
)
batch_size = rgb_cond.shape[0]
input_image_tokens: torch.Tensor = self.image_tokenizer(
rearrange(rgb_cond, "B Nv H W C -> B Nv C H W", Nv=1),
)
input_image_tokens = rearrange(
input_image_tokens, "B Nv C Nt -> B (Nv Nt) C", Nv=1
)
tokens: torch.Tensor = self.tokenizer(batch_size)
tokens = self.backbone(
tokens,
encoder_hidden_states=input_image_tokens,
)
scene_codes = self.post_processor(self.tokenizer.detokenize(tokens))
return scene_codes
def render(
self,
scene_codes,
n_views: int,
elevation_deg: float = 0.0,
camera_distance: float = 1.9,
fovy_deg: float = 40.0,
height: int = 256,
width: int = 256,
return_type: str = "pil",
):
rays_o, rays_d = get_spherical_cameras(
n_views, elevation_deg, camera_distance, fovy_deg, height, width
)
rays_o, rays_d = rays_o.to(scene_codes.device), rays_d.to(scene_codes.device)
def process_output(image: torch.FloatTensor):
if return_type == "pt":
return image
elif return_type == "np":
return image.detach().cpu().numpy()
elif return_type == "pil":
return Image.fromarray(
(image.detach().cpu().numpy() * 255.0).astype(np.uint8)
)
else:
raise NotImplementedError
images = []
for scene_code in scene_codes:
images_ = []
for i in range(n_views):
with torch.no_grad():
image = self.renderer(
self.decoder, scene_code, rays_o[i], rays_d[i]
)
images_.append(process_output(image))
images.append(images_)
return images
def set_marching_cubes_resolution(self, resolution: int):
if (
self.isosurface_helper is not None
and self.isosurface_helper.resolution == resolution
):
return
self.isosurface_helper = MarchingCubeHelper(resolution)
def extract_mesh(self, scene_codes, resolution: int = 256, threshold: float = 25.0):
self.set_marching_cubes_resolution(resolution)
meshes = []
for scene_code in scene_codes:
with torch.no_grad():
density = self.renderer.query_triplane(
self.decoder,
scale_tensor(
self.isosurface_helper.grid_vertices.to(scene_codes.device),
self.isosurface_helper.points_range,
(-self.renderer.cfg.radius, self.renderer.cfg.radius),
),
scene_code,
)["density_act"]
v_pos, t_pos_idx = self.isosurface_helper(-(density - threshold))
v_pos = scale_tensor(
v_pos,
self.isosurface_helper.points_range,
(-self.renderer.cfg.radius, self.renderer.cfg.radius),
)
with torch.no_grad():
color = self.renderer.query_triplane(
self.decoder,
v_pos,
scene_code,
)["color"]
mesh = trimesh.Trimesh(
vertices=v_pos.cpu().numpy(),
faces=t_pos_idx.cpu().numpy(),
vertex_colors=color.cpu().numpy(),
)
meshes.append(mesh)
return meshes